UH
iti
[aY Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

BACHELORTHESIS

Integration of the Cloud Native Renew Plugin into the Technical
Realization of the Mushu Architecture

vorgelegt von

Marvin Taube

Fakultat MIN-Fakultat

Fachbereich Informatik

Arbeitsbereich: Algorithmen, Randomisierung, Theorie
Studiengang: Bachelor Informatik

Matrikelnummer: 7158355

Erstgutachter: Dr. Daniel Moldt

Zweitgutachter: Michael Haustermann

UH
iti
[aY Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

BACHELORTHESIS

Integration of the Cloud Native Renew Plugin into the Technical
Realization of the Mushu Architecture

presented by

Marvin Taube

Faculty MIN-Fakultat

Department Informatik

Group: Algorithmen, Randomisierung, Theorie
Course: Bachelor Informatik

Student Id: 7158355

Supervisor: Dr. Daniel Moldt

Co-Supervisor: Michael Haustermann

Abstract. Die Integration von neuen Elementen in bestehende Architekturen ist
ein wiederkehrendes Problem in der Informatik. Das ist insbesondere der Fall, wenn
schon eine komplexe Architektur besteht und das zu integrierende Element eine grofie
Feature-Erweiterung mit sich bringt. Diese Arbeit beschéftigt sich mit der Integra-
tion des Cloud Native RENEW Plugins in die MUSHU Architektur. Ziel ist es der
Gesamtumsetzung der MUSHU Architektur ndherzukommen. Dabei legt diese Arbeit
den Fokus auf das Aufsetzen und Dokumentieren einer Produktumgebung, um das
Zusammenspiel von MUSHU und dem Cloud Native Plugin zu testen, und im spéteren
fiir die Integration von weiteren Teilkomponenten genutzt werden kann. Der Fokus
wird dabei auf das Cloud Native RENEW Plugin gesetzt, welches als Komponente
in die Architektur integriert wird. Die Integration wird dann mit einem zusammen-
hidngenden Gesamtbeispiel in der Produktumgebung validiert. Das Ergebnis ist eine
Ausgangsbasis bestehend aus einer laufenden Produktumgebung und dazugehoriger
dokumentation, welche dazu dient weitere Komponenten in die MUSHU Architektur zu
integrieren und diese damit zu vervollstindigen. Zudem wird eine beispielhafte Inte-
gration von dem Cloud Native RENEW Plugin in die Produktumgebung vorgenommen,
welche als beispielhaftes Vorgehen fiir weitere Integrationen in die MUSHU Architektur
genutzt werden kann.

Abstract. Integrating new elements into existing architectures is a recurring prob-

lem in computer science. This is especially the case when a complex architecture
already exists and the element to be integrated involves a large feature extension.
This work integrates the Cloud Native RENEW Plugin into the MUSHU architecture.
The overall goal is to get closer to the complete implementation of this architecture.
This work focuses on setting up and documenting a production environment to test
the interaction of MUSHU and the Cloud Native Plugin, which can later be used to
integrate other subcomponents. The focus will be on the Cloud Native RENEW Plu-
gin, which will be integrated into the architecture as a component. The integration is
then validated with a coherent overall example in the production environment. The
result is a foundation consisting of a running product environment and associated
documentation, which can be used as a guideline to integrate additional components
into the MUSHU architecture and thus complete it. In addition, an exemplary integra-
tion of the Cloud Native RENEW Plugin into the production environment is carried
out, which can also be used as a guideline procedure for further integrations into the
MUSHU architecture.

vi

Contents

IList of Figures{ xi
|1 Introductiod 1
L1 Motivation o oo o 1

1.2 Objectivd 1

1.3 Structurd 1

E Basica .. 3
D1 Cloud Nativity . . . o o oo 3

0.2 Java Springj 4
2.2.1 Dependency Iniectionl 4

2.2.2 Spring Boot Admin 4

.3 Docke1| 5
0.4 Kubernetesl 5

D5 Petri Netd . . o . o oo 6

D.6 Renewl 6
2.6.1 Architecture{ 6

.62 Plugind 6

l2.7 Method of Working and Toolsl 7
2.7.1 Agile Software Developmentl 7

D72 ToolS 9

I2.8 Mushu Architecturel 9
.8.1 Concep‘d 9

.8.2 Technical Realizatiod 10

t?; Requirements Analysis{ 13
|4 An Overview of the Cloud Native Renew Plugid 17
4.1 Requirementsl 17
1.2 Speciﬁcatiod 17
1.3 Analysis of the Current State of Cloud Native Renewl 18
1.4 File Structure] 18
1.5 Additional Documentation of the Pluginl 20
1.5.1 Uploading of Pluginsl 20

1.5.2 Loading of Pluginsl 21

1.6 Versions of the Cloud Native Plugid 22
4.7 Evaluatiod 22
1.8 General Evaluatiod 23

vii

Preparation of Mushu Components. 25
1 Requirements 25
2 Specification| 25

Performed Work on Renew Plugin&i 26

b.3.1 Distributé 26
5.3.2 RenewKubd oo 27

3.3 Cloud Nativa 27
E.3.4 Additional Worﬁl 28

b.4

Evaluation 28

ki Setup a Distributed Production Environmend 31
................................... 31
.................................... 31

6.3 Starting Point of the Production Environmen‘_cl 32
6.4 Recovery of the Production Environment 33
E.4.1 Base Softwaré 33

4.2 Renewlo 35

i 35

) 35
7 BEvaluation 36
6.7.1 Accomplishment of the Resultsl 36
................................ 37
............................ 37

I’?_Integrating Cloud Native Renewl 39
7.1 Requirements 39
7.2 Specification 39
7.3 Steps for Integration| 39
7.3.1 Creation of Build Taskd 40
7.3.2 Providing new Docker Images 40

7.3.3 __Update of §cripté 41

7.3.4 Updated Documentatiod 41

T4 Resultl 41
7.5 Evaluation|. 42
7.5.1 Limitationd 42

7.5.2 General Evaluation 42
Extension of the Cloud Native Renew Usabilityl 45
................................... 45

i 0N . o o o e e 45

.3 The best Way to Create Exampled 46
8.3.1 Different Types of Example Netg 46

832 QUECOME . . . o o 48

8.5.1 Methods of creating Cloud Native Renew Examplesl 52

8.5.2 General Evaluation|, 52

................................... 53
.................................... 53

.3 Creation of a Coherent Examgﬁlé 53
0.3.1 Created Reference Nety 54

0.3.2 Simulation Processl 56
..................................... 57

Limitations of tl&Vahdatiod 57

4.2 General Evaluation] 57

O Evaluation|. 0 i i e e e e e e e e e e e 59
|i0.1 Cloud Native Aspectsi 59
0.1.1 Agilitvl e 59

0.1.2 Operability] o o oo 59

0.1.3 Observabilityl o o 60

0.1.4 Resiliencd 61

0.2 Working Method 61
0.3 Compliance with Requirementsl 62
..................................... 65
..................................... 65

11.2 Outlook o e e 66
h1.2.1 Other Potential Topics Related to MusHy| 67
IBibliographyI 69

ix

List of Figures

.1 _Mushu architecture Concept out of (Réwekamp 2023a)| 10
E.Q Technical realization of the MUSHU architecture out of (Rowekamp 2023a)| .11

|4.1 File Structure of the Cloud Native Plugid 19
'6.1 The initial basis of the technical realization of the MUSHU architecture outl
bf (Rowekamp 2023a)] 33
b.? The result state of the reestablishment of the technical realization of thd
IMUSHU architecture| 36

|(1 The current implementation of the technical realization of the MUSHU ar-l
hitecture in the production environmem 42
8.1 Example net of using a curl request to upload a Qlugiﬁ 47

8.2 Example net of ensure plugin availability on a specific Cloud Native Renewl
.. 49
.3 Example net of uploading a SNS file on a specific Cloud Native Renew Noddg 50
8.4 Example net of starting the simulation on a specific Cloud Native Renew Noddg 51
8.5 Example net of controlling a simulation on a specific Cloud Native Renew
- < S o1

0.1 Main system net for the all-in-one exa,mglé 54
0.2 Modified upload SNS net for the all-in-one exampld 55
0.3 Remote execution net for the all-in-one exampla 56

xi

Xii

Chapter 1

Introduction

1.1 Motivation

Different solutions and implementations should always be considered to develop a dis-
tributed environment with Cloud Native aspects. Thereby, it is important to bring the
solutions developed for this purpose into a format in which they work this environment.
Integrating newly developed components into an existing distributed system is like in any
other software project an essential part in the development. Primarily when the integration
of a feature significantly extends the functionality of the current system.

The simulation software RENEW gets a fundamental extension of functionality with the
Cloud Native Plugin. With the integration of this plugin, it is possible to ensure that Cloud
Native aspects are embedded in a distributed RENEW system such as MusHU. It allows the
previously developed theoretical concepts and solutions for a local version of the simulator
to be integrated into the large scope of a distributed system, thus enabling an even more
extensive distributed simulation.

1.2 Objective

This theis aims to provide a description and documentation of the integration process of
Cloud Native aspects into an existing distributed RENEW architecture. As a model of
this integration was given in the technical realization of the M USHU architecture developed
by (Réwekamp 2023a). The progressive integration of the subcomponents to achieve the
integration of the Cloud Native Plugin into the MUSHU architecture is presented in this
thesis.

The main focus will be on the integration of the Cloud Native RENEW plugin in the
current version of the technical realization of the MUSHU architecture. Other required
components of the MUSHU architecture will be partially addressed. The goal is to bring the
current implementation of a distributed RENEW System closer to the complete technical
realization of the MUSHU architecture.

1.3 Structure

The beginning of this thesis will introduce the necessary basics in chapter E In doing
so, a basic foundation is provided to understand this thesis. Different technologies like
Kubernetes and Docker and theoretical concepts like Cloud Native and Petri Nets will be
discussed, and an insight into RENEW is given, which is the central software for this thesis.

2 CHAPTER 1. INTRODUCTION

After the basics, requirements are defined to achieve the integration of the Cloud Native
RENEW Plugin. The work on these requirements then takes place in the form of smaller pro-
totypes. These are always considered a subproblem whose solution is essential to achieving
the goal of this thesis. The prototypes are divided into different chapters, which separate
them thematically.

It starts with an overview of the current status of the Cloud Native Plugin in chap-
ter W in which the current results from previous work done are compiled and partially
supplemented.

This is followed in Chapter B by a summary of the work phase before Jan Henrik’s dis-
putation. Here, the basic work needed for integrating a plugin into the MUSHU architecture
is discussed. In particular, a focus is placed on the relevant elements for the Cloud Native
RENEW Integration.

This is followed by chapter B, where the production environment is set up. The existing
computer cluster at the University of Hamburg is examined and brought into a state where
it can be used for the later integration.

The actual integration of the Cloud Native RENEW Plugin follows in Chapter H This
describes how the integration process for a plugin in the MUSHU architecture can look and
which elements must be considered.

Chapter B follows the elaboration on the extension of the Cloud Native RENEW Plugin.
The focus is set around to improve the usability of the provided functions from a reference
net context. Thus, enabling easy to use Cloud Native Renew functionalities while developing
reference nets. In addition, a focus is placed on documenting the new use of the plugin.

In the last chapter of the main part, the plugin’s integration is validated. There the
collected contents from [and § are validated with the help of a coherent example. Also
focusing on the documentation to provide a good understanding of the use of the production
environment.

Finally, I will evaluate the success of the integration and whether the requirements
have been met. In addition, an outlook on what further work is necessary to complete the
technical realization of MUSHU and other possible topics in that area is given.

Chapter 2

Basics

2.1 Cloud Nativity

Cloud Nativity describes a concept that can be applied to software and software systems.
There are various definitions of Cloud Nativity, for example the definition from the Cloud
Native Computing Foundationll;

Cloud native technologies empower organizations to build and run scalable ap-
plications in modern, dynamic environments such as public, private, and hybrid
clouds. Containers, service meshes, microservices, immutable infrastructure,
and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable,
and observable. Combined with robust automation, they allow engineers to make
high-impact changes frequently and predictably with minimal toil.

- (Cloud Native Computing Foundation 2023)

Another definition comes from (Garrison and Nova 2017), which has been used in the
context of RENEW and the development of the Cloud Native Plugin. According to Garrison
and Nova, Cloud Nativity can be divided into four core characteristics: Resilience, Agility,
Operability, and Observability. Since these characteristics are mentioned in both definitions,
it is appropriate to look at them in more detail.

Resilience

Resilience requires that a system continues to run when a failure occurs. It should be noted
that it is not about avoiding all possible errors. The focus is on ensuring that the system
is capable of repairing the failure should it occur.

Agility

Agility requires that the system is quickly deployable and can be developed in small steps.
This applies to the system itself, but also has a certain focus on the development that
happens on the system. Furthermore, the system should be able to adapt to changing
environmental conditions.

1Cloud Native Computing Foundation: https://www.cncf.io/

3

4 CHAPTER 2. BASICS

Operability

Operability requires that the system can be controlled and managed at any given time.
This guarantees the user direct control over the system and processes without having to
access additional resources. The control of the system should also be possible without
locality. This means the user should have complete external control over the system and
its functionalities.

Observability

Observability requires that the system provides information about itself and its environ-
ment. Real-time information is just as relevant as log information or similar data. The goal
is to achieve that the system is transparent for the user.

In the following, the terminology of Resilience, Agility, Operability, Observability is
used as defined in (Garrison and Nova 2017).

2.2 Java Spring

Java SplringE is a framework, for web-based applications in Java. It allows to create an
executable application in a short time and with little effort. In addition, there is a very
extensive ecosystem, which provides many extensible functions (Spring 2023). An example
of this would be Spring Boot Admin, which is used on the context of the Cloud Native
plugin. Another part in this ecosystem is the Spring Boot project itself, which was used to
initialize the Spring Project used as a foundation in the Cloud Native plugin.

First approaches on how to connect a Spring context with RENEW can be found in (Jan
Henrik Rowekamp 2018). An_actual implementation has been done together as part of
the (Rowekamp, Taube, et al. 2021) publication.

Since the concept of dependency injection is related to the Cloud Native approach, and
Spring Boot Admin plays an important role of monitoring and consequently documentation,
it makes sense to look at these two points again in more detail.

2.2.1 Dependency Injection

The Java Spring framework allows to use the concept of dependency injection. In short,
this concept allows us that the users of this system do not have to worry about the ini-
tialization of individual components. The developer specifies how to initialize objects and
the framework does the work and injects this initialization where it is needed. This con-
cept is explained very well in the article (Fowler 2014) where the fundamental idea behind
dependency injection is demonstrated with simples examples.

This concept is relevant for the Cloud Native Plugin, since it avoids strong dependence
on objects. The internal decoupling of components achieved in this way is directly in line
with the Cloud Native design pattern. Parts of the dependency injection can be found in
different parts of the plugin code.

2.2.2 Spring Boot Admin

Spring Boot Admin is an extension for a Spring Boot application and provides an admin
interface with different status information. This provides functions like health monitoring,
build information, log data, HT'TP endpoints, etc. The overview can be accessed through

2Java Spring Framework: https://spring.io/

2.3. DOCKER)

a_predefined port via HTTP. The Spring Boot Admin Project ist managed by (Edmeier
2023), and the project itself can be found on their GitHub pagea.

In the context of the Cloud Native Plugin it is interesting, because it uses Spring Boot
Admin primarily for monitoring the RENEW instance. Using the built-in elements made it
easy and fast to obtain important information about the system and RENEW. By extending
the functionality using the StatusMonitor plugin created for this purpose, the Spring Boot
Admin Interface also allows displaying information from RENEW plugins unrelated to Cloud
Native. In the overall context, Spring Boot Admin can be seen as the first variant of the
status monitor seen in the Mushu architecture P.2.

2.3 Docker

Docker is an open-source project that can be used to develop software that can run in an
encapsulated environment. The goal is to execute the software independently and separately
from the given infrastructure.

Docker itself uses a client-server architecture. For example, a client can communicate
with a Docker host via the command line interface. The Docker host itself can be any
computer. Various images can then be created on this Docker host. The images can then
be interpreted by the Docker host machine and executed as a containerized instance on
that computer. The images can be created and stored directly on the Docker host or
made available in a registry such as Gitlab if multiple Docker hosts are to use the same
images (Docker 2023a).

The containerized instance is like a virtual machine. The software and its dependencies
are encapsulated from the host system and run in their independent environment. The
most significant difference to the typical virtual machine is that all containers of a host run
with the same container engine. This container engine provides an operating system (OS)
for all containers and runs on the host’s operating system kernel. Thus, each container
does not have its own kernel and does not have the requirement to have its own OS. This
implementation saves resources on the host system and results in more computing capacity
on the host system (Microsoft 2023).

2.4 Kubernetes

Kubernetes is an open-source tool for managing complex platforms. It can be used in var-
ious scenarios to deploy cloud-based applications and, according to (IBM 2023), competes
with the common use of virtual machines. In addition, Kubernetes already provides many
functions for implementing Cloud Nativity aspects to the given architecture.

The difference between virtual machines is that Kubernetes introduces an infrastructure
where a master communicates with various workers. The master and workers are considered
nodes in the implementation, usually servers or PCs. The master communicates with the
workers using an API and provides various management endpoints for the Kubernetes
network. The software can then run containerized on the workers in pods. Pods are like
minimalistic virtual machines that can execute the given environment by the container.
A template of this software as a pod can be passed to Kubernetes, ensuring that the
respective template is always available in the cluster. Kubernetes takes control of the
deployment of the pods on the workers and decides which of them is best suited for running
the software (Kubernetes 20234).

3Spring Boot Admin: https://github.com/codecentric/spring-boot-admin

6 CHAPTER 2. BASICS

Such a system’s advantages include self-healing by automatically restarting crashed
pods or horizontal scaling, which makes it possible to automatically deploy new pods in the
cluster when the workload is too high. In addition, one keeps the advantage of using VMs
so that the software can be run everywhere since, it is containerized in pods, that work like
minimal VMs.

2.5 Petri Nets

Petri nets are a type of graph that can be used to model various systems and workflows.
The basic structure always consists of places and transitions connected with directed edges.
In addition, some tokens can be placed in places and moved from one point to another by
transitions. The sum of all occupies of all places in a Petri net represents the state of the
net. The relevant definitions and concepts can be found in (Petri 1996).

More relevant for this work are the reference nets which were presented in (Kummer
2002). Thereby, the subform of the colored Petri nets is taken as a starting point and
enriched with object-oriented aspects. Instances of nets can be created, which can then be
simulated independently. Furthermore, it is possible to simulate net instances directly in
other nets. In addition, communicating different nets instances via synchronous channels
and a corresponding binding search is possible. Another notable feature is that reference
nets can execute program code, which makes them a powerful tool for modeling and complex
simulating systems. Further details on the use and definition can be taken from (Kummer,
Wienberg, and Duvigneau 2002).

2.6 Renew

RENEW is a simulation software that can be used to simulate Petri nets as well as various
other types of nets ([Renew - The Reference Net Workshoy 2023). In particular, the focus
is on the reference nets that in addition to the usual Petri net formalism also allows Java
code to be executed. Hence the name RENEW which stands for ‘Reference Net Workshop’.
RENEW was developed by (Kummer, Wienberg, Duvigneau, et al. 2020) and have been
in continues development at the University of Hamburg since then. Over the years, new
concepts have been integrated into RENEW, some of which have changed the software and
its architecture significantly.

2.6.1 Architecture

Since the version 2.0, RENEW builds on a plugin architecture (Duvigneau 2009). Almost all
functions of RENEW are provided in different plugins, which can be combined individually
and viewed as individual components. Furthermore, module layers extended the architec-
ture with the RENEW version 4.0. Plugins with their dependencies are put into separate
Java module layers (Janneck 2021). The module layer architecture played an important
role in the creation of the Cloud Native Renew Plugin, since this could not use the typical
RENEW module architecture. More about the creation of the Cloud Native RENEW plugin
in parallel with the module layer can be found in (Rowekamp, Taube, et al. 2021).

2.6.2 Plugins

As discribed is RENEW currently based on a plugin architecture. In this context, a new
plugin means that RENEW is extended by a new piece of software. Each plugin is seen

2.7. METHOD OF WORKING AND TOOLS 7

as an additional independent component, which extends the current functionality. These
concepts are described by (Duvigneau 2009).

In this thesis some current RENEW Plugins are more important than others. For this
reason, a description of the plugins that play an important role in the integration of Cloud
Native Renew follows.

Distribute

The Distribute Plugin was previously used for the distributed simulation of network in-
stances in RENEW. With the plugin, it is possible to simulate a network simulation on
several distributed RENEW instances. The Distribute Plugin uses the Java RMI for the
communication between the individual RENEW instances. A detailed description of the
concept and implementation can be found in the work (Simon 2014). Since the Distribute
Plugin uses a now deprecated version of the Java RMI and the usability of the plugin is asso-
ciated with significant overhead, plans are to replace it by a new resilient Distribute plugin.
The Resilient Distribute Plugin was conceptualized and partially implemented in (Senger
2021) and (Rowekamp 2023a).

RenewKube

RENEWKUBE is a plugin for RENEW which allows distributing a simulation to several
RENEW instances. Unlike the Distribute Plugin, RENEWKUBE works with minimal effort
from the modeler and runs mostly in the background. The distributed system that is
constructed by RENEWKUBE works with a master and several worker nodes. These worker
nodes each contain a RENEW instance which can be used for simulation. The master node
organizes the environment. To achieve this desired behavior, RENEWKUBE uses Docker and
Kubernetes. A detailed description of RENEWKUBE can be found in paper (Réwekamp
and Moldt 2019).

Cloud Native Renew

Cloud Native Renew is a plugin developed as part of the AOSE 20 project and published at
PNSE21 in (Réwekamp, Taube, et al. 2021)). It is designed to extend RENEW with an API
interface to apply the Resilience, Agility, Operability, and Observability aspect of the Cloud
Native paradigm to RENEW. To achieve this, RENEW will be extended with the features
such as external simulation control, net and plugin upload, as well as status reporting and
health metrics using a modern HTTPS interface.

Some basic functions of the Cloud Native Plugin and how they were elaborated, as well
as their relation to the Cloud Native paradigm are rudimentary described in the bachelor
thesis (Senger 2021). In addition, conceptual information about the plugin can be found
in (Rowekamp, Taube, et al. 2021)) and in (Réwekamp 2023a)).

2.7 Method of Working and Tools

Various methods and tools were used in this thesis. These methods and tools are presented
once, and their functionality is explained.

2.7.1 Agile Software Development

Parts of this thesis were developed in the university project ‘Collaborative Distributed
Software Development’. This project is a mandatory elective course at the University of

8 CHAPTER 2. BASICS

Hamburg in which students with different degrees work together on the software project
RENEW. This course focuses on working in small groups to develop the RENEW software
further. Thereby a subform of Scrum named Scrum@Scale is used as a guideline for agile
software development in RENEW.

According to (Drumond 2023), Scrum describes an agile working method primarily used
for software development. The goal is to support the development team with guidelines
and principles. Project management tools are mainly used for ticket organization and
management. It is left to the team internally how it organizes and achieves the tasks.
Thus, a Scrum team can be considered an independent unit that always takes care of a
specific task for a particular time.

To process a tasks, Scrum teams are created, which process previously defined tasks in
sprints. It is common that a sprint has a fixed duration of up to 2 weeks and is usually
defined by a sprint goal, which should be achieved in that time. The team usually remains
fixed so that it can adapt and get used to the respective working methods of the team
members.

Three different roles are assigned in the team to distribute and structure the work.
According to (Schwaber and Sutherland 2023), the roles are defined as follows. One person
takes the role of the Product Owner. This role is responsible for defining a goal for a given
sprint. Further, a Product Owner is responsible for ensuring that all the information needed
to work on a particular task is available and understandable.

The Scrum Master is a role that one team member performs. The role takes care of
implementing the Scrum principles and is generally responsible for managing the team
according to the Scrum guidelines. Furthermore, he serves as a link between Product
Owner and the developer to create mutual understanding. He also is generally responsible
for solving internal and external problems that get in the way of completing the task.

The remaining members of the team take on the role of developers. The developers
take over the planning and the final processing of the sprint goal. They make sure that the
conditions set by the Product Owner are met. Developers are also responsible for adapting
their working methods if the conditions change.

In addition, there are various Scrum events in the development process. The events
include the Sprint itself, Sprint Planning, Daily Scrum, Sprint Review, and Sprint Retro-
spective. Further information about the different roles or specific information about the
execution of the Scrum Events can be found in the Scrum Guide (Schwaber and Sutherland
2023).

In Scrum@Scale, several Scrum teams are considered. The established guideline of (Suther-
land and Inc 2023) can be used to implement Scrum@Scale. Two new roles are therefore
defined. First, there is the Scrum of Scrum Masters role, which takes over the role of the
Scrum Master for several teams. In addition, there is the Chief Product Owner, who also
carries the tasks of the Product Owner across teams. Also, new Scrum events are intro-
duced, mainly used for cross-team communication. For example, dedicated meetings of the
Scrum of Scrum Master with all subordinate Scrum Masters, as well as a meeting of the
Chief Product Owner and all subordinate Product Owners. These meetings are then used
for cross-team organization, planning, problem-solving, and coordination. Further detailed
information about Scrum@Scale can be found directly in the guide (Sutherland and Inc
2023).

Concerning this thesis, the role of a Product Owner was taken by me. In this role,
tasks and goals were identified that were relevant to the success and completion of this
thesis. These goals were then worked on in a small group. The role of a developer was also

2.8. MUSHU ARCHITECTURE 9

taken to collaborate with the team. Here the concept of Scrum was broken a little, but
this was necessary to influence the development of this thesis directly. In addition, the own
contribution to this work is also guaranteed. In the following chapters, all implementations
developed in collaboration with others are marked as such.

2.7.2 Tools

During the development of this thesis, various tools were used for communication, organi-
zation, and development.

For the communication, mainly the open-source communication platform Mattermostl
was used. This has been the central communication point with all participants of the
software project, as well as with supervisors. For voice chat, Mattermost was extended
with the open-source software BigBlueButton E, a platform for voice communication. Both
were hosted internally by the university.

For version control, software implementation, and for writing this thesis, GitLab B was
used. Its primary function was using the provided version control and DevOps features.

2.8 Mushu Architecture

The MUSHU architecture plays an essential role in this thesis. Therefore, in this section,
the architecture is explained fundamentally. MUSHU stands for Multi-agent system with
Scalability in heterogeneous underlying systems. The architecture was designed by Jan
Henrik as part of his dissertation (Réwekamp 20234) and represents an architectural concept
for distributed applications. The Cloud Native Renew Plugin was developed as part of the
technical realization of the MUSHU architecture with the RENEW software.

In the following, the theoretical concept of the MUSHU architecture is presented, as well
as the technical realization.

2.8.1 Concept

The MUSHU architecture can be compared with other architectures such as the ORGAN
architecture and the MULAN architecture. What stands out in MUSHU is the focus on plat-
form management. In other architectures such as MULAN, the infrastructure and platforms
are only very superficially present. MUSHU, however, models very precisely the infrastruc-
ture of a system, and thus the communication possibilities of individual platforms.

The MuUSHU architecture lends itself to describing and developing scaling distributed
systems. The focus of MUSHU is precisely the scaling and distribution of a system. Thus
also, the strengths of the MUSHU come to the surface. Concurrency, autonomy, platform
interaction, and real-world distribution can be modeled very well.

In figure 2.1 is a graphical overview of the MUSHU architecture. Particularly noteworthy
is the platform management and the platform itself. There are similarities to MULAN, but
it is far more complex compared to it. In (Cabac 2010), MULAN was described and can
be used as a comparison source to the MUSHU architecture. MULAN was first developed
in (Rolke 1999). Since MULAN is a very complex architecture, only the work is referred to
here, and MULAN is not explained further. The complexity of the platform and platform
management is necessary to describe the complex flow of a distributed and scaling system.

4Mattermost: https://mattermost.com/
>BigBlueButton: https://bigbluebutton.org/
6GitLab: https://about.gitlab.com/

10 CHAPTER 2. BASICS

Infrastruktur

()—#{reaktiv () [proaktiv (@c)] (")

(_—+lstar] (ko)—{Zugrifi —X)
[Zugrif] [Austausch] [Entfernen]

@

[in | [Entfernen] [out]

Figure 2.1: Mushu architecture Concept out of (Roéwekamp)

An excellent way to get a better idea of this concept is to take a closer look at the application
of this architecture.

2.8.2 Technical Realization

In figure @, Jan Henrik presents in (Rowekamp) a possible technical realization of
the MUSHU architecture using the RENEW simulation software. Since the Cloud Native
Plugin was developed in this technical realization, it will be discussed here. As shown in
figure R.2, each worker node has a RENEW instance. The Cloud Native Plugin can also be
found in each of these instances. The presence of the plugin in each instance is necessary
because the Cloud Native Plugin represents the interface for communication and control.
Furthermore, as shown in figure .2, each RENEW instance also has the Resilient Distribute
Plugin developed in (Senger I@), enabling different types of communication. The monitor
node shown in figure is currently taken over by Status Monitor Plugin and Spring Boot
Admin. Both applications were implemented in parallel with the Cloud Native Plugin.
The message brokers shown in figure were developed parallel to the Resilient Distribute

2.8. MUSHU ARCHITECTURE 11

Plugin in (Senger) The Cluster Manager is implemented by RENEWKUBE and the
RENEWKUBE Manager. Both were developed and described by Jan Henrik in (Réwekamp
and Moldt 2019). The CI/CD environment is handled by a GitLabﬂ instance, which provides
various images deployed to the individual worker nodes. The technical realization presented
in figure ﬁis a goal to be realized. The integration of the Cloud Native Plugin described
in this work is to advance this technical realization.

Clustermanager
Headless Headless
Renew Renew

Status Monitor Petrinetz Saga Orchestrator (Renew)
Message Message Message
Broker Broker Broker

& g B Vollstandig neu Kommunikation
- Logische Einheit C] Anwendung (nativ) B zu konstruieren A5 zwischen A und B
Physikalische [= T Y Neuin diesem = = = Weitere Komponenten

- Maschine - RaneaE R . _ _ | Kontext r _ dieser Art existieren

Con(alrlenmerte Komponente, die nicht Teil dieser Arbeit ist

Datenbank

Ar

Figure 2.2: Technical realization of the MUSHU architecture out of (Rowekamp)

TGitLab Repository for RENEW: https://git.informatik.uni-hamburg.de/tgi/Renew

12

CHAPTER 2. BASICS

Chapter 3

Requirements Analysis

As mentioned the foundation for this thesis is based on the MUSHU architecture developed
in (Réwekamp 20234). In addition, parts of this work originated in the AOSE 20 project
and were extended in a paper publication at PNSE21 in (Réwekamp, Taube, et al. 2021). In
the following, the general requirements for this thesis are listed. More specific requirements
can be found in the respective prototypes.

This thesis aims to integrate the earlier described Cloud Native Renew plugin into the
current technical implementation of the MUSHU architecture . However, the individual
components must be examined in more detail before the integration can be carried out.
First, the Cloud Native Renew plugin must be examined in more detail.

Initially, it must determine if the current implementation state of the Cloud Native
Renew plugin is suitable for the integration process. Therefore, it must be checked whether
the plugin is functional in its current state. In addition, it should be evaluated if the
current documentation of the plugin is sufficient. If there are deficits in the documentation,
it should be completed accordingly before the plugin is integrated into the larger context of
the MUSHU architecture. Furthermore, if there are different versions of the Cloud Native
Plugin, it should also be decided which version of the plugin is to be used for the integration.

Requirement R1:
The current state of implementation and documentation of the Cloud Native
Renew Plugin should be reviewed.

Requirement R2:
It should be decided which version of the Cloud Native Renew Plugin is the base
version for the integration process.

The next step is to focus the MUSHU architecture. Here is to determine if the current
state of technical realization of the MUSHU architecture and its subcomponents are suitable
for the integration of the Cloud Native Renew Plugin. Adjustments should then be made
to the components which are not suitable. The goal is to create a starting point into which
the Cloud Native Renew plugin can be integrated.

Requirement R3:

It should be determined which components of the current technical implementa-
tion of the MUSHU architecture need to be adjusted so that an integration of the
Cloud Native Renew Plugin is possible.

Requirement R4:
If components of the current technical realization of the MUSHU architecture
need to be adapted, they should be adapted accordingly.

13

14 CHAPTER 3. REQUIREMENTS ANALYSIS

For the development and later validation of the integration, an environment is needed in
which the technical realization of the MUSHU is implemented. Furthermore, a production
environment is desirable to come as close as possible to real-world requirements. For this
purpose, a computer cluster with appropriate documentation was provided in the context
of (Rowekamp 20234) at the university. For this thesis, it must be determined in which
condition this environment is, whether the documentation is sufficient for its use, and which
restrictions exist for the usage of the provided environment should be examined.

Requirement R5:

The technical realization of the MUSHU architecture on the provided cluster
should be determined in its current state to see if it is suitable for the Cloud
Native Renew Integration.

Requirement R6:

Suppose the cluster is not in a functional state. In that case, it must be re-
stored to a state suitable as a development platform and later as a production
environment for wvalidating the integration. If the documentation provided for
the cluster environment is insufficient, it should also be supplemented to make
future use of the environment more accessible.

After preparing the components for integration and creating an environment for testing,
the actual integration from the Cloud Native Renew Plugin should occur. The process
involves integrating the plugin into the latest version of the technical implementation of
the MUSHU architecture. All steps of the integration and subsequent adjustments should be
carried out. In addition, which steps were necessary for the integration into the environment
should be documented to create a guide for subsequent integrations.

Requirement RT7:
The actual integration from the Cloud Native Renew Plugins into the latest
version of the MUSHU architecture’s technical realization must occur.

Requirement RS8:
The steps necessary for integrating the plugin into the environment should be
documented for subsequent integrations.

After the successful integration of the Cloud Native Renew Plugin, the usability of the
plugin in a cluster environment should be evaluated. As a developer of reference nets for the
cluster, it should be as easy as possible to use provided functions of the plugin. Therefore,
it is necessary to evaluate the best way to make the provided functions of Cloud Native
Renew usable for manipulating remote RENEW instances for the reference net developer. If
the plugin is extended in the process, the extension should be documented, and appropriate
instructions for the usage should also be provided.

Requirement R9:

It should be evaluated how the functions of the Cloud Native Renew Plugin can
be used in the cluster environment. The results should then be documented
accordingly.

After the plugin has been integrated into the environment and its usability in the pro-
duction environment has been evaluated, the success of the integration should be validated.
For this purpose, an example use case should be created that shows how to interact with
the functions of the Cloud Native Renew Plugin in the cluster and how the plugin interacts

15

in the product environment. For the use case, it is logical to use an example from the
development of RENEWKUBE as a basis since this has already worked in the production
environment and would demonstrate the extension nicely.

Requirement R10:
An example use case demonstrating the interaction with the plugin and the
production environment should be created to validate a successful integration.

16

CHAPTER 3. REQUIREMENTS ANALYSIS

Chapter 4

An Overview of the Cloud Native
Renew Plugin

This chapter is based on several previous papers and is intended to be a collection of the
current state of the Cloud Native Plugin. Implementations that others have helped to
develop or developed on their own, are marked as such.

The first prototype presented here summarizes in more detail what the Cloud Native
Plugin includes and to what extent they have been implemented and validated. The func-
tions were developed in the context by (Rowekamp, Taube, et al. 2021)) and later validated
and partial documented by (Senger 2021). On this basis, the prototype is intended to
serve as a starting point for integration in the distributed context, which will then be
implemented in the later prototypes.

4.1 Requirements

The Cloud Native Renew Plugin must be in a state where it can be integrated into a
distributed environment. For this purpose, it should be verified that the individual com-
ponents work and are well documented. For that, an overview of the plugin should be
provided. If it is not yet the case, all missing parts should be documented. Should the
plugin not work in the current state, it should be brought into a state wich is suitable for
the integration.

4.2 Specification

The documentation of software projects is usually a significant challenge. The reason for this
is that over a long period, various people work on the same project with their own perception
of documentation. Even though there are guidelines, there are severe discrepancies in the
quality and completeness of it.

The same difficulty exists with the Cloud Native Renew Plugin. Therefore, the vari-
ous documentation places about this plugin are considered and checked for completeness.
Furthermore, missing or incomplete documentation will be added. Extensions to the func-
tionality of the plugin will be considered in later chapters.

17

18 CHAPTER 4. AN OVERVIEW OF THE CLOUD NATIVE RENEW PLUGIN

Feature Cloud Native Aspekt Documentation Implementation

Log Functionality Observability (Senger 2021) AOSE 20/21

Health Metrics Observability (Senger 2021) AOSE 20/21

Simulation Control | Operability / Resilience (Senger 2021) AOSE 20/21

Upload Nets Operability / Resilience (Senger 2021) AOSE 20/21

API Documentation Observability (Senger 2021) _ AOSE 20/21
Plugin Upload Operability (Rowekamp, Taube, et al. 2021)E PNSE21
Plugin Loading Operability (Rowekamp, Taube, et al. R021)H PNSE21

Table 4.1: Overview of the current features of the Cloud Native Plugin and where to find
the documentation about it.

4.3 Analysis of the Current State of Cloud Native Re-
new

As already mentioned in , the individual functionalities of the Cloud Native Plugin
are discussed, and placed in the context of the Cloud Native paradigm in (Senger 2021)).
The thesis covers the following aspects of the plugin: Java Spring as the basis of the plu-
gin, provision of logs via HTTP, status monitoring via HTTP, start/stop/stop operations
of simulations via HTTP, upload of nets via HT'TP, and API documentation. Further-
more, (Senger 2021) focuses more specifically on the Distribute plugin and the resulting
Resilient Distribute plugin in the context of Cloud Native.

A central function of the plugin is to load plugins at runtime into a RENEW instance,
which only has been partly described in (Rowekamp, Taube, et al. 2021). In terms of inte-
gration, this function is interesting because such functionality will allow to heterogeneously
initialize different RENEW instances at runtime, and add special functionalities to them
if needed. In the overall view of the Cloud Native schema, this functionality fulfills the
operability condition. This feature, like the others, is implemented via an HT'TP interface.

In figure all current functions of the Cloud Native Renew Plugin are listed. Each
function is also assigned an aspect of cloud nativity. In addition, you can find a source of
documentation for each function and the project in which this function was implemented.

Since the documentation in Senger 2021 is sufficient for the most functionalities, those
are not documented again in this thesis. The last two functionalities in figure have not
yet been appropriately documented. There is a publication (Rowekamp, Taube, et al. 2021);
however, the functionality was only partially treated there. Otherwise, there is also a report
of the AOSE 21 project (Marvin Taube 2021)), describing the functions. Nevertheless, the
documentation is only rudimentary since the functions were developed outside the project.
Therefore follows for these two functions, ‘Plugin Upload’ and ‘Plugin Loading’ a detailed
documentation later in this chapter

4.4 File Structure

Since no work has dealt with the unique file structure of the Cloud Native Renew Plugin,
this section will document it. The file structure is interesting because there is a certain
standard in the Java Spring context of how to structure a project.

The thesis (Janneck 2021) has already worked out how the general file structure for a
RENEW plugin should be. Most plugins follow precisely the scheme that was worked out
in (Janneck 2021). This structure can also be found in the Cloud Native Renew Plugin. In

IThis function will also be documented by this thesis later in
2This function will also be documented by this thesis later in

4.4. FILE STRUCTURE

v CloudNativeSpring
v src
v main
v java
v de.renew.cloudnative.spring
v de
v renew
v cloudnative
v spring

> health
> identity
v loading

3. PluginConfig.java
3. PluginControl.java
;. PluginRestController.java
logger
resilientdistribute
simulation
upload
util
5. APIConfig.java
5. PluginCloudNativeSpring.java

VOV VvV WV

5. ReturnStatus.java
3. SampleController.java
5. Scheduler.java
3 SpringStartup.java
3. module-info.java
? resources
> test
build.gradle
.1 gradle.properties
wp: README.md

Figure 4.1: File Structure of the Cloud Native Plugin

20 CHAPTER 4. AN OVERVIEW OF THE CLOUD NATIVE RENEW PLUGIN

the plugin, however, there is another structure in the file system that comes from the Java
Spring standards.

In figure El! is a picture of the file system of the Cloud Native Renew Plugin. Not
all folders are expanded because the structure of some packages are almost the same.
On the level of the main folder, ‘de.Renew.cloudnative.spring’ are, on the one hand, the
main classes, which are used in the whole plugin, as well as the start classes of the plu-
gin. The class ‘PluginCloudNativeSpring’ is the plugin’s main class and is executed first.
SpringStartup is the start class of the Spring context and is also executed at the start. The
class ‘ReturnStatus’ provides functions to make a response easier for a given request and
is used in various parts of the plugin. The class ‘APIConfig’ configure the SwaggerUI, and
the ‘Scheduler’ is used to create the health metrics. As the last class of the layer, there is a
‘SampleController’. This class has a test endpoint that can be used as a template for other
simple endpoints.

There are now different packages on the plugin’s main level. The util and identity
package contain internal functionalities of the plugin. The resilient Distribute package
was developed in (Senger 2021)). All other packages contain functionality with an HTTP
endpoint. The basic structure of the packages is the same and consists of three classes, as
shown exemplary in the ‘loader’ package in figure [1! All packages with an HTTP endpoint
contain similar classes like ...Config, ..Control, ..RestController. The ‘PluginConfig’ is the
connection to other RENEW classes from other plugins. Here the references from the other
plugins are packed into so-called beans and made accessible for Spring though dependency
injection. The ‘PluginControl’ class represents the main class of that functionality. In
the example case, the loading of plugins is implemented in this class. In the last class,
‘PluginRestController’, the HT'TP endpoints are defined, and the request is handled. The
separation of request handling and actual implementation is common practice in Spring.
Therefore, if other functions are planned, this scheme should be followed.

4.5 Additional Documentation of the Plugin

The upload function as well as the loading of a plugin at runtime have not yet been thor-
oughly documented. However both are significant functionalities for the later use in MUSHU.
Therefore, the following sections will take a closer look at these functions. First, the plu-
gin upload will be looked at and after that, the loading of plugins is documented. Both
features were implemented as part of the publication (Réwekamp, Taube, et al. 2021) in
collaboration with the authors.

4.5.1 Uploading of Plugins

The upload functionality was created to fulfill the operability aspect. The background
of the implementation was to initialize new plugins into a RENEW instance at runtime.
The implementation with an HTTP endpoint meets these requirements. In the following,
it is documented how the upload of a plugin works. In addition, the internal process is
explained, and details of the implementation are considered.

Upload Endpoint

An HTTP endpoint ‘/upload/plugin’ is provided for the plugin upload. The endpoint takes
three parameters.

The first parameter ‘pluginJarFile’ should contain the path to the plugin that is to
be uploaded. The plugin should be uploaded as a .jar file and meet a RENEW plugin’s

4.5. ADDITIONAL DOCUMENTATION OF THE PLUGIN 21

requirements. This means the plugin needs to contain a ‘module-info.class’ and a ‘plugin.cfg’
file. If these files are not included in the .jar file, it will not be accepted, and the upload
will fail.

The second parameter ‘pluginName’ can be used to give the plugin its file name. Please
note that this parameter only determines the name of the plugin file in the file system. If
the plugin is loaded, the plugin name from the plugin.cfg is listed in the running system.
Nevertheless, the parameter is needed to identify the plugin in the file system to load it
after the upload.

The third parameter ‘override’ is a boolean value and describes whether the plugin
should be overwritten if a plugin with the same name already exists in the file system. The
value of this parameter is set to ‘false’ by default.

Internal Functionality

When uploading a plugin, it is validated in the fist place. It is checked if the ‘module-
info.class’ and ‘plugin.cfg’ are available. It is important to mentioned that the content of
these files is not checked, which makes it is possible to upload faulty plugins.

When validating the plugins, there is also no verification of authenticity. Should the
convention be followed, plugins of any kind can be uploaded. The lack of authenticity
represents a security vulnerability if access to the upload function is not regulated. Should
the system’s security requirements be in the foreground, one should rework the validation
aspect.

If the validation is successful, the uploaded plugin is stored in the file system of the
remote RENEW host. The uploaded plugins are added to the regular‘dist/plugins’ plugin
folder. Each plugin is additionally marked with the prefix ‘upload’ The prefix is created
to distinguish base and uploaded plugins.

The loading of the plugin does not happen during the upload. To load a uploaded
Plugin, the following endpoint must be considered

4.5.2 Loading of Plugins

Loading plugins into the active RENEW context also fulfills the operability aspect of Cloud
Native, and is a key component behind the functionality of Cloud Native. In the following,
it will be documented how to use the endpoint and what needs to be considered, as well
explaining which elements were used for the internal implementation.

Load Endpoint

Like the upload functionality, there is also an endpoint ‘/loadPlugin’ for loading the plugin
into RENEW. This endpoint expects a parameter ‘pluginName’ of type string. In this
parameter, the filename of the plugin in the file system of RENEW must be used.

The intended workflow is to upload a plugin first. Thereby also, a parameter ‘plugin-
Name’ is used. The parameter should be identical to the parameter of the load plugin. As
mentioned before, a prefix is assigned when uploading. If it is not present, this prefix will be
appended to the ‘pluginName’ parameter. This behavior allows using the same parameters
even if the internal name is different.

Internal Functionality

Cloud Native Renew uses the provided function of the Loader Plugin for the process of
loading a plugin at runtime. The reason for this function was that the desired functionality

22 CHAPTER 4. AN OVERVIEW OF THE CLOUD NATIVE RENEW PLUGIN

had already been implemented and worked perfectly. The Cloud Native Plugin hooks into
the functionality of the Loader Plugin and thus executes the loading of the plugin.

The decision for this variant was made because, first the Loader Plugin has already
been completed, and the functions have been tested. Therefore it can be assumed that the
provided functionality works and there is no need to develop redundant behavior. Second,
the Loader Plugin is used in every RENEW instance. So it is possible to use the function-
ality of the Loader without having multiple dependencies in a RENEW instance. This also
guarantees that loading is possible even if the actual function is not in Cloud Native Renew
itself.

4.6 Versions of the Cloud Native Plugin

Since the development of the Cloud Native Plugin, there has been constant work on it.
Therefore, many different versions of the plugin have been created, each at a different stage
of development. For integrating the Cloud Native plugin later in Chapter H, it is essential
to use a version that works without problems but still provides the most functionality.

At this time, there are two major versions of the plugin and a few minor subversions that
reside in different branches in the RENEW Git repository. The two major versions are the
base version and the version with the extension of the communication via a message broker.
The base version of the plugin is in the modular master branch of the RENEW repository.
This is the direct result of the published version in (Réwekamp, Taube, et al. 2021). This
version was also used as the basis for the documentation created in this chapter.

The other notable version of the plugin is the one created as part of (Senger 2021),
which enables communication via resilient Distribute and Apache Kafka. The results are
also already available on the branch modular master of the RENEW repository.

The first mentioned version would be more suitable for integrating the plugin than
the one with resilient Distribute. This is because changing the communication medium
adds another level of complexity to the integration. Furthermore, the realization of the
communication via message broker is not a function that is directly related to the Cloud
Native aspects. Therefore, the use of the base plugin version with the functions described
earlier in this chapter was chosen as a starting point for the integration.

4.7 FEvaluation

In chapter B, requirements were established, which should be fulfilled within the scope of
this chapter. The main question was whether the plugin is in a state in which it can be
integrated into a distributed environment. For this purpose, an overview of the functions
was first created. The overview includes where and when this function was implemented
and where the respective documentation can be found. Creating an overview of the plugin
was also one of the requirements for this chapter. In this context, the functions were also
tested again. The plugin works so far and is ready for integration.

Another requirement was that there is a sufficient documentation for the individual
components of the plugin. For this purpose, references were made to already written doc-
umentation, and the upload and loading functions of the plugin were documented in more
detail. In addition, an overview of the file structure was created, which had not yet existed
in this form.

4.8. GENERAL EVALUATION 23

4.8 General Evaluation

The prototype described in this chapter deals with requirement R1 and R2 developed
in B. Considering the overall context of this thesis, this chapter fulfills the essential role of
documentation. Due to the plugin’s development over a long period, the documentation of
the plugin fell short. Not all functions were documented in this chapter, because sufficient
documentation already exists for some parts. These documentations are listed in this
chapter, making the documentation easier to find. In addition, overviews of structure
and functionalities were created. These overviews are also part of the documentation of
the plugin. Further the decision which version of the plugin to take as a baseline for the
integration was outlined in @ Thus, requirements R1 and R2 are fulfilled.

24 CHAPTER 4. AN OVERVIEW OF THE CLOUD NATIVE RENEW PLUGIN

Chapter 5

Preparation of Mushu Components

In preparation for Jan Henrik’s disputation, a task force was created to help him implement
as much of the content from his disputation as possible. This working group consisted of
Jan Henrik, Laif-Oke Clasen, Sven Willrod, and me.

Many aspects in the whole context of the MUSHU architecture were looked at during
this working period. This time was mainly spent updating and merging different plugins
into the current RENEW version. The work done was also necessary for the final integration
of the Cloud Native Plugin.

Since the content of this thesis is directly related to Jan Henrik’s dissertation, essential
aspects of this thesis were also worked on during this working period. Because of that, the
work done of the task force is documented in this chapter. However, this is done with a
focus set on the elements relevant to this thesis.

5.1 Requirements

The requirements of this chapter can be divided into two sections. First, requirements can
be set up for this thesis. These conditions drive the development forward and add value to
it.

In addition, there are requirements for the work phase. These requirements were estab-
lished at the beginning of the preparation and were a guideline to show what still needs to
be done.

Since the work done at the preparation time is not documented anywhere, this chapter
will serve mainly as the documentation. All relevant aspects for the integration of Cloud
Native Renew will be documented. Furthermore, the requirement for the completeness of
the work is to be checked.

The work phase itself had the goal of preparing the disputation of Jan Henrik. For this
reason, the goal was to create a complete executable system of the MUSHU architecture.
The completion of that goal would have included the integration of the Cloud Native Plugin.
The requirement for the work was to mainly to update all components to the current RENEW
conventions. In addition, it was the goal that still existing bugs are eliminated and missing
documentation is supplemented.

5.2 Specification
As part of the preparation for the disputation, various people worked on the technical

realization of the MUSHU architecture. A large part of it was the revision of various plu-
gins. These included RENEWKUBE, RENEWKUBE Manager, Distribute, Cloud Native,

25

26 CHAPTER 5. PREPARATION OF MUSHU COMPONENTS

Distributed Analysis, and Momoc. Most of the rework involved implementing the RENEW
criteria and bug fixes.

In addition, a major topic was the documentation of the individual components, which
can be found in the respective ReadMe files in the Git repositoryﬁl.

The following sections deal with the documentation of the work done. Difficulties and
obstacles are discussed, and their solutions are presented. In addition, parts that still need
to be finished are outlined.

5.3 Performed Work on Renew Plugins

The working period is about two weeks, during which four people were occupied implement-
ing the technical realization of the MUSHU architecture for the disputation of Jan Henrik.
The focus was primarily on completing various plugins from RENEW and other components
that are necessary for the MUSHU architecture.

All plugins that were worked on concretely are listed in this section. An overview of what
has been done on each plugin is given and what additional value these bring to technical
realization of the MUSHU architecture is outlined.

5.3.1 Distribute

We started with the work on the Distribute Plugin. In the best case, this plugin should be
replaced by the Resilient Distribute Plugin. However, the Resilient Distribute Plugin has
not yet been completed.

At the time of writing, only simple communication via the Resilient Distribute Plugin
is possible. Also, it has not yet been tested with Cloud Native Plugin in a distributed
environment.

The main work done to the Distribute Plugin was to check if the current RENEW
conventions were respected. First of all, the file structure had to be adapted to the current
file structure used by all RENEW plugins, which was developed in the context of (Janneck
2021).

After the file structure was adapted, some provided sample nets were tested. The
verification was necessary because it was unknown whether they still worked with the
current version of the plugin. After the successful verification, a new Gradle build task was
created. The task builds a minimal RENEW version with the Distribute Plugin. The build
is suitable for testing the software and was not difficult to implement due to the RENEW
architecture.

The next step was to update the ReadMe file of the plugin to the current standard
conversions for ReadMe files for RENEW. Since the ReadMe of the Distribute Plugin was
very outdated, it was completely created from scratch again. The new ReadMe now also
serves as the main starting point for the plugin’s documentation. In the ReadMe are also
all relevant other documentation linked.

The Distribute Plugin is also still built with a build.xml file at the time. Since this vari-
ant for building plugins with Ant no longer corresponds to the current RENEW standards,
this should be changed. Since the file was very complex and too many Ant tasks had to be
changed, it was decided to postpone this due to time constraints.

Otherwise, a bug was fixed where different dependencies were present in ‘module-info’,
‘build.gradle’, and ‘plugin.cfg’ The dependencies on other modules and plugins should be
uniform in those three files. Therefore, they were analyzed and adjusted accordingly.

'RENEW Repository: https://git.informatik.uni-hamburg.de/tgi/renew

https://git.informatik.uni-hamburg.de/tgi/renew

5.3. PERFORMED WORK ON RENEW PLUGINS 27

Finally, a merge request to the modular/Distributed-Analysis Branch was created.
This branch of RENEW served for this work time as the main branch on which all results
were collected.

5.3.2 RenewKube

Most of the work on the RENEWKUBE plugin and the RENEWKUBE Manager was done by
Jan Henrik and Laif-Oke Clasen. In this subsection, is a summary given of what work was
done on the two components. Both of which play an essential role or the integration the
Cloud Native Plugin and are, therefore, relevant for this thesis.

On the RENEWKUBE plugin itself, the scripts and Dockerfiles were updated to the
current RENEW 4.0 version. The main goal was the modularisation of the RENEWKUBE
plugin. This work was time-consuming as these plugins needed to be tested with VMs, and
no VM images have yet been deployed for these versions. A detailed list of what has been
done to the plugin can be found in the merge request of this workH,

RenewKube Manager

Some work has also been done on the RENEWKUBE Manager. Even if it is proprietary
software, it was tried to adapt to the RENEW conventions.

However, modularization was difficult. Since the software is fundamentally based on
Java Spring, it was impossible to apply the module conventions of RENEW to it. The
reason was that the used modules must be set to the keyword ‘opens’ for the Java Spring
context to work. Opening all modules means that all dependencies are on the same level.
This centralization is suitable for Spring because Spring can always reference everything,
but this contradicts the module layers of RENEW.

Nevertheless, adjustments were made to the software to implement the RENEW conven-
tions as best as possible. This includes the general RENEW conventions, adjustments to
the structure, and the creation of the ReadMe.

One of the most significant enhancements to RENEWKUBE Manager was the ability
to assign a port to individual RENEW instances. Each RENEW instance runs in a Docker
container and is accessible via Kubernetes. However, in order to be able to run networks
in a distributed manner, the respective instances need to know which internal port they
are assigned. This was made possible by a simple query at startup. Each time a RENEW
instance is started, the RENEWKUBE Manager is addressed, and the instance receives its
assigned port.

In addition, other changes and improvements were made to the software. A detailed
list of the work can be found in the earlier mentioned corresponding Jira epic. The imple-
mentation of the individual elements can be found in the repository of the RENEWKUBE
Manager.

5.3.3 Cloud Native

The Cloud Native Plugin was already in a state that complied with the RENEW 4.0 con-
ventions. A merge request was checked and executed after resolving merge conflicts.

In addition, a Gradle build task was created that disabled the elements of the Resilient
Distribute. This was because these elements led to considerably higher startup times.

2Distributed Simulation Branch: https://git.informatik.uni-hamburg.de/tgi/Renew/-/tree/
modular/distributed-simulation

3Modularisation of RENEWKUBE: https://git.informatik.uni-hamburg.de/tgi/renew/-/merge_
requests/297

https://git.informatik.uni-hamburg.de/tgi/Renew/-/tree/modular/distributed-simulation
https://git.informatik.uni-hamburg.de/tgi/Renew/-/tree/modular/distributed-simulation
https://git.informatik.uni-hamburg.de/tgi/renew/-/merge_requests/297
https://git.informatik.uni-hamburg.de/tgi/renew/-/merge_requests/297

28 CHAPTER 5. PREPARATION OF MUSHU COMPONENTS

Especially when the Cloud Native Plugin is not in the right environment. This behavior
happens when starting with the Resilient Distribute elements, and try to connect via Apache
Kafka. The connection is not possible if there is no target of the connection. Therefore the
plugin was in a loop, which caused the higher startup time.

After merging the plugin, there was another bug called jsr305 bug. This bug had
extended to the modular master branch of RENEW, which is one of the main branches of
RENEW.

The jsr305 bug was a bug in the way how Java Spring load the required modules. This
causes the same additional modules to be loaded in different dependencies, which leads
to duplications and causes a crash at the startup. The two modules that were affected
were the ‘jsr305” and the ‘javax.annotation” module. The solution was to remove the jsr305
module in the required ‘spring-boot-admin-starter-client” and ‘guava’ module.

Solving the jsr305 bug resulted in new bugs in the Cloud Native modules. Two libraries
were missing after that, ‘javax.enterprise:cdi-api:1.2” and ‘io.projectreactor.tools:blockhound:1.0.6. RELEASE’
which had to be added back in Cloud Native build.gradle manually.

In addition, the module names of the log4j modules had to be adapted to new versions
since, several versions of log4j were present. The last change was the name of the Status
Collector Plugin to adapted to the given conventions.

5.3.4 Additional Work

Since the other topics are not complex enough to get their sections but were important for
the progress of the implementation of the technical realization of the MUSHU architecture,
they are listed here. For the exact assignment of it, one can look into the corresponding
Jira Epict.

First, we have the creation of a new KeepAlive plugin. Creating a new plugin was
necessary because the old KeepAlive plugin from RENEW requires a console gui interface,
which cannot be used in the Docker context. Therefore, a plugin should be created that
provides the same functionality without requiring a gui. In addition, this plugin should
then also be controllable via Java property just like the old console plugin.

Another important point was the addition of comments in the various plugins and
modules used in the technical implementation of the MUSHU architecture. These were
primarily done in the modules and plugins around RENEWKUBE and the RENEWKUBE
Manager. However, the comments of the individual elements are essential for the subsequent
generation and to create a better overall understanding.

The ReadMe files were also supplemented in many subcomponents in the same course.
These include the plugins: Console, ConsoleGuilnteraction, RENEWKUBE, RENEWKUBE
Gui, KeepRunning, Distributed Analysis, and Distributed AnalysisGui.

5.4 Evaluation

The evaluation is divided into two parts in this chapter. First, the extent to which the
requirements for the work phase have been met is considered. There, it is evaluated how
the work phase proceeded and how successful it was.

The second part evaluates to what extent this chapter had an added value for this thesis.
The content of the work phase is considered, as well as the documentation.

4Jira Epic: https://tgipm.informatik.uni-hamburg.de/jira/browse/AOSE21AVS-521

https://tgipm.informatik.uni-hamburg.de/jira/browse/AOSE21AVS-521

5.4. EVALUATION 29

5.4.1 Working Phase

Essential work, like merge requests and documentation, was done in this working phase.
In addition, bugs were fixed, and functions were extended. The work was related to many
different RENEW plugins that are relevant to the MUSHU architecture.

Nevertheless, many tasks are still not finished. The biggest open topic is the upgrade
of the Distribute Analysis Plugin. In addition, it has not been possible to set up a working
version of the technical realization of the MUSHU architecture. This is mainly due to the
time limitation of the disputation deadline. The next prototype in chapter f will discuss
this in more detail.

Finally, it can be determined that the work phase was an overall success. A sold
foundation of rudimentary task were done, and the main upgrade to the components to
use them in a RENEW 4.0 context were performed. Even if still some tasks are open, many
goals were reached, and many tasks were worked on. A detailed list of the work done and
the tasks still open can be found in the earlier mentioned Jira Epict.

5.4.2 General Evaluation

The prototype presented in this chapter deals with the established requirements R3 and
R4 from chapter B. The various components of the technical realization of the MUSHU
architecture should have been considered, and it should have been determined whether
these need to be adapted for integration. In addition, if changes to the components for
integrating the Cloud Native Plugin are necessary, these changes should be accomplished.

The main work and changes were made directly on various plugins of RENEW. Sec-
tion of this chapter presents a selected choice to the changes made to the plugins. The
listing of the plugins mentioned here serves as an overview of the RENEW plugins that had
to be adapted to integrate the Cloud Native Plugin. This list fulfills the requirement R3
to determine the components that must be changed.

Furthermore, in the same section , the changes made to the plugins are described
in more detail. There it is described, what the individual problem was, and how this was
solved. Requirement R4 is also fulfilled since the plugins were adapted accordingly to make
integrating the Cloud Native Plugin possible. Thus, both requirements from g have been
processed and fulfilled in this prototype.

5Jira Epic: https://tgipm.informatik.uni-hamburg.de/jira/browse/A0SE21AVS-521

https://tgipm.informatik.uni-hamburg.de/jira/browse/AOSE21AVS-521

30

CHAPTER 5. PREPARATION OF MUSHU COMPONENTS

Chapter 6

Setup a Distributed Production
Environment

The prototype presented in this chapter deals with the reestablishment of the distributed
production environment, in which the current version of the technical realization of the
MusHU architecture’s is to be implemented. The reason for creating a production en-
vironment is that it comes very close real-world conditions. The reestablishment of the
environment is necessary because a system-wide update has removed the previous state of
the environment.

The prototype’s main points are divided into three parts. First, a capture of the pre-
viously implemented state is made. It follows a description of the process of what was
reestablished and which elements were adapted in the process. The new current state is
presented at the end of the prototype, and the reestablishing process is evaluated.

The prototype described in this chapter was created in cooperation with the AOSE
project team.

6.1 Requirements

The MUSHU architecture is a complex system designed to consist of several computers.
Therefore, a cluster is needed to test the architecture and develop the technical realization.
Such a cluster can be created in the form of a production environment. The advantage is
that such an environment with real computers comes very close to real-world conditions
and is ideal for testing.

Thus, developing and implementing the technical realization is essential to have an
environment where progress can be tested accordingly. In addition, there must be appro-
priate documentation for the environment that explains how to interact with it and how
to maintain the environment if problems with it arise.

6.2 Specification

First, it should be documented in which sate the implementation and the corresponding
documentation was present at the university. This state of the cluster should be used as a
standard to evaluate later whether the restoration covers the same scope as the status that
prevailed before.

When restoring the cluster, the particularities of the different components should be
documented accordingly. In addition, reference should be made to the existing documen-
tation. Contradictions or missing elements in the documentation should be annotated

31

32 CHAPTER 6. SETUP A DISTRIBUTED PRODUCTION ENVIRONMENT

accordingly to facilitate a renewed setting up of the environment.

The goal here is to obtain a state of the environment in which the integration of the
Cloud Native Plugin can be carried out. For this purpose, the results should be presented
accordingly, and their limitations should be documented, as well as the extension made to
it.

6.3 Starting Point of the Production Environment

At the beginning of this thesis, a part of the technical realization of the MUSHU archi-
tecture was already implemented and made available in a computer cluster. In addition,
instructions for the technologies used and information for installing the required compo-
nents were created in a Confluence Space Jan Henrik Réwekamp 2023. This provision of
the implementation documentation was created in the context of (Réwekamp 2023a)).

In figure 6.1], the state of the implementation of the technical realization of MUSHU is to
be seen as it was at the beginning of this thesis. One can recognize that it concerns thereby
a part of the exemplary implementation mentioned in section . The most significant
differences are the communication, CI/CD server, and status monitor components, as well
as the absence of the Cloud Native Plugin in the worker node.

The communication in this variant of the technical realization was implemented with the
Distribute Plugin from RENEW. This plugin is used to enable to communication between
different reference net simulations. Consequently, the Resilient Distribute Plugin, Message
Broker, and Orchestrator shown in figure are not used in this variant to implement
the communication between nets. Work has already been done on communication through
Apache Kafka as part of (Senger 2021/), but these results have not been integrated into the
cluster environment.

The CI/CD server and the status monitor components are also not implemented in
this variant. Nevertheless, both components will be handled in this chapter as part of the
environment recovery process and thus integrated into this variant. This also applies to the
Cloud Native Plugin, where the integration is considered in the next prototype [in more
detail.

A collection of documentation was also created for the technical implementation. This
includes an overview of technologies used, the status of development, a description of com-
ponents, and instructions for reinstalling the environment. The documentation provided
is extensive, but it turned out to be insufficient to install the environment from scratch.
Therefore, it will be enriched with new information gathered from the recovery process.

6.4. RECOVERY OF THE PRODUCTION ENVIRONMENT 33

}

Cluster (logische Einheit)

Cluster master

Clusterr

p— f ————— Worker Knoten Worker Knoten
(L = — — - == === N\
Management- Anbindungs- Headless |
System Plugin Renew 1 e
L i I
K°m:::;t::'°"s * Distribute Plugin | — — — — — !
DB I_ —_—)
S 4
andi Kommunikation
P Logische Einheit Volistndig neu pq g Kor
Anbindungs- Distribute zu konstruieren zwischen A und B
Plugin Plugin Physikalische { = T Y Neuindiesem = m = Weitere Komponenten
Maschine v | Kontext R . dieser Art existieren

Renew mit GUI Containerisi o
ontainerisierte Renew Plugin Datenbank
Anwendung SN
Workstation R
Anwendung (nativ)

Figure 6.1: The initial basis of the technical realization of the MUSHU architecture out
of (Rowekamp 2023a).

6.4 Recovery of the Production Environment

As already described, there was a functioning cluster at the university. However, this was
removed by a system update and a corresponding complete reset of the computers. The
system update was mate to the Ubuntu version 22.04.1 LTS.

The scenario now was to use the provided instructions for the cluster to restore it.
However, several problems arose in the process. First, many steps to install the base
software were inaccurate or invalid due to the system update. In addition, since there was
no prior knowledge of the technologies, the recovery took more work.

For the recovery process, the provided instructions were used to restore the clusters
step by step. In the process, many manual sections had to be adapted or supplemented. In
the following, the individual technologies and components are described in detail. Specific
approaches and difficulties are documented in order to make it easier to set up the cluster
again. It should be noted that admin permissions are required on the computers to perform
the recovery.

6.4.1 Base Software

Before considering the recovery from the technical realization of MUSHU with RENEW,
the base software must be installed on the systems. The three relevant ones are Java,
Kubernetes, and Docker. Java could be installed simply over the package manager of

Linux in the necessary version. For Docker and Kubernetes, several steps were necessary,
which will be described below.

Kubernetes

For Kubernetes, the official documentation (Kubernetes 2023b) should first be used for the
installation. Ensuring that kubeadm is installed is crucial, as this is required for managing
Kubernetes.

34 CHAPTER 6. SETUP A DISTRIBUTED PRODUCTION ENVIRONMENT

In the documentation of kubeadm is a reference made to another software: cri-docked (Mi-
rantis 2023). If Docker should work with Kubernetes in conjunction, the cri-docked software
must be installed. Corresponding references were not present in the provided instructions.
However, extensive testing determined that this software is required to obtain the desired
functions. In addition, it is necessary for some commands to specify which cri-socket is to be
used. When a prompt comes up while setting up the cluster, the following argument @
must be added to the command.

$... ——cri-socket=unix:///var/run/cri-dockerd.sock

Another issue was using the workstations. The workstations are the home directory of
the different users with individual access rights. In the case of the university, these are all
students and staff. Working on the home directory with admin permissions was impossible
since the workstations are located on a separate server with different access rights. This
behavior was also not considered in the provided manual. The solution has been to put the
files needed for commands with admin permissions into a local home directory.

When moving files, it should also be noted that the Linux ‘mv’ command does not work
because it needs permissions on the source and destination directory, which is impossible
with the current permission. The command ‘cp’ can be used as an alternative to the ‘mv’
command.

Docker

When installing Docker, the official documentation (Docker 2023b) can be used again as
described in the instructions. During the installation, it was noticed that the installation
of Docker Desktop did not work on the computers. Therefore, the CLI version of Docker,
which also contains all the required functions, must be used. It must be checked whether
Docker Compose was also installed since this is required for the execution of configuration
files.

The connection to the CI/CD server shown in the overview of the complete technical
realization in figure also must be set up via Docker, since the CI/CD server is used as
an image registry for the Docker images. The provided manual does not mention that the
process from Docker to log in to the CI/CD server is session based. So if the session is
terminated and problems occur, Docker needs to be logged in again on the CI/CD server.

Kubernetes also needs access to the secrets of the login to the CI/CD server. Therefore,
these need to be set with a config file. Here a bug was encountered that the config file format
is essential. The required encoding of the file is ASCII. If the file is encoded in UTF-8, it
will not work. In which format the file is created or saved depends on the terminal and
text editor used. The secrets can be read from files created by Docker. It should be noted
that Docker’s files are located in the /root directory instead of the home directory since all
Docker commands had to be executed with admin permissions.

The last point with Docker is the creation and use of images. The guide provides a good
starting point describing how to use the images from the CI/CD server. However, the guide
does not detail how to create them. To figure out how to create images, one has to look
into the corresponding files in the resource folder of the RENEWKUBE, and RENEWKUBE
GUI Plugin, in which the source files for the images are located. Based on this, new images
for the required RENEW version were created and loaded onto the CI/CD server. How the
providing images process work on the CI/CD server depends on the software on which this
runs. Regarding the technical realization of MUSHU with RENEW, the documentation of
Gitlab (GitLab 2023) should be followed to upload and mange the image stored.

6.5. DOCUMENTATION 35

6.4.2 Renew

After the environment was restored with the essential software, RENEW had to be adapted.
The goal was to create a minimally RENEW version that was usable with the Cloud Native
Plugin. Most of the adjustments in the code for using RENEW 4.0 have already been made
in the context of chapter b.

A vital adjustment still made was the creation of new Gradle build tasks To later use
the Cloud Native Plugin in the cluster, the Gradle task ‘cloudNativeCluster’ was created.
This build contains a minimal RENEW version with the addition of all necessary plugins
for using the Cloud Native Plugin. In chapter H this will be discussed in more detail.

Another necessary change on the part of RENEW was the adjustment of the start com-
mands of the various RENEW instances. Since the start command changed with RENEW 4.0
release, it must be adapted in all places and all Docker images. In addition, new parameters
were added, which are required by the newly added plugins in the build. An overview of the
start commands for the various components in the cluster can be found in Confluence (Jan
Henrik Réwekamp 2023).

6.5 Documentation

As mentioned in this chapter, the instructions for setting up the cluster needed to be
completed and updated. Therefore, a significant focus of this work was to correct the
deficiencies of the instructions in order to facilitate a new setup of the environment. To
achieve this, additional sources were created to provide information about the setup and
use of the cluster.

First, the provided instructions in Confluence were revised. The revision was done either
directly in the text or by adding markers and notes to text sections. Thus, a large part of
the manual could be preserved and be still in compliance with the changes.

Additional pages were created in the Confluence, which includes a short guide to the
complete manual. This short guide includes a summary of all used and updated commands
of the manual and can be used to set up a new cluster. Another short guide was created,
which summarizes all necessary steps to execute if the master PC was switched off. Further-
more, scripts were created, which contain the commands of the manual and short guides
so that a manual execution is not required anymore.

All information about the revised manual and the newly created guide can be found in
the Confluence Jan Henrik Rowekamp 2023 and should be sufficient after the revision to
set up a new cluster from scratch with the technical realization of MUSHU.

6.6 Result

Figure @ shows a graphical representation of the final result of this prototype. It is to
be acknowledged that all components which were present in version before the reset shown
in figure are again available in the environment. Therefore these components are not
described in more detail. A difference from the starting basis is the now completed CI/CD
server integration. This was done directly through the provided instruction, since only the
process how the cluster stores and obtains the Docker images needed to be changed.

The result at hand is a functioning cluster environment in which the technical realization
of the MUSHU architecture runs with RENEW. Furthermore, this environment can be used
to integrate the Cloud Native Plugin in the following prototype.

36 CHAPTER 6. SETUP A DISTRIBUTED PRODUCTION ENVIRONMENT

Cluster master clcbD
------- —— N . Server
I h » Image Registry

|

|
I Clustermanager I:
| I
|

A 4

Cluster (logische Einheit)

—_ :. ————— Worker Knoten Worker Knoten
L - m === AN
Management- Anbind! Headl |
M System Plugin Renew | e

v] 1

=
M Kommun!katlons- M| === .| Distribute Plugin
. medium

¥ Y

A

andi K ikati
A A J Logische Einheit Vollstandlg neu e g o.mmunl ation
Anbindungs- Distribute zu konstruieren zwischen A und B
Plugin Plugin Physikalische [= T Y Neuin diesem = = m Weitere Komponenten
Maschine s | Kontext . dieser Art existieren
Renew mit GUI - R

Containerisierte Renew Plugin Datenbank
Anwendung

Workstati
'orkstation C] Anwendung (nativ)

Figure 6.2: The result state of the reestablishment of the technical realization of the MusHU
architecture.

6.7 Evaluation

In the evaluation of this prototype, the results are first discussed. Thereby, it is evaluated
what went well during the development and how this process could have been even more
effective. The limitations of the recovery of the environment follow. In that subsection,
it is presented which components are still not entirely functional. In the last subsection a

reference is made to requirements set up in chapter B and evaluated whether these were
fulfilled.

6.7.1 Accomplishment of the Results

The development of this prototype in cooperation with a project team was of great advan-
tage. Even if the participants had little to no prior knowledge of the technologies, working
with someone on these new technologies was helpful. In addition, the distribution of work
ensured that results were achieved more quickly and that work could be done on several
components in parallel. The overhead created by the project team in the form of training
and regular meetings was not a disadvantage. Through the regular meetings, the goal and
structure of how to archive it needed to be clear at any time.

During reestablishment of the environment, it became apparent that a step-by-step
approach is very advantageous for progress and understanding of the subject. The selected
strategy was to consider the individual components and technologies as encapsulated as
possible. An example was that Kubernetes was used as the base system, and initially, two
RENEW instances tried to communicate without Docker on that base. Step by step, one
more RENEW instance could be connected to the system, or an existing RENEW instance
could be replaced with a containerized Docker image. This procedure made it possible to
isolate and fix errors relatively quickly.

However, this approach made a prerequisite that the technologies such as Kubernetes

6.7. EVALUATION 37

or Docker function as expected. In some cases, it would have been better to take an even
smaller step and first test the essential software extensively with smaller programs since
RENEW is a very complex software project. This even more small-step approach would have
had the advantage of creating an even better understanding of the individual technologies
without the need to consider the overhead of RENEW. Therefore, it would be advisable
for future work to use the smallest-step approach if the used technologies are not or only
barely known.

6.7.2 Limitations

Even though the recovery has been successful and complete for the most part, there are still
current problems with the RENEWKUBE plugin. The current issue is that RENEWKUBE
has problems with the newly created Docker images. RENEWKUBE needs these images to
perform the functions such as the auto-scaling of workers. After this thesis, the issue will
continue to be worked on by the AOSE project team.

One approach to investigating this issue further would be to rebuild the environment
with the RENEW 2.6 images. It could be compared where precisely the difference to the
newly created images lies, and a solution could potentially be found. However, since RENEW
2.6 is unsuitable for integrating the Cloud Native Plugin, this will not be done in the context
of this thesis.

6.7.3 General Evaluation

The prototype presented in this chapter deals with the requirements R5 and R6. The goal
was to capture the state of the production environment, and to restore this environment
after it has been unusable because of the performed system wipe.

Requirement R5, therefore, requires documentation of the previous implementation to
see if it is suitable for integration with the Cloud Native Plugin. In section @ the starting
point of the cluster was presented. Since the cluster was no longer usable due to the
mentioned system update, it was clear that the environment had to be restored.

For this purpose, requirement R6 states that the environment should be restored and
brought into a state where the integration of the Cloud Native Plugin is possible. In
addition, the requirement includes updating the documentation if it is unsuitable for the
recovery process of the environment. Both requirements were addressed in section 6.4. The
difficulties of the recovery were documented, and the existing documentation was extended
accordingly. The recovery result was shown in section (.6, and the limitations were outlined.

In summary, the prototype presented here addresses both requirements. The require-
ment R5 was completely fulfilled. For requirement R6, only partial success was achieved
since the recovery is incomplete without a fully functioning RENEWKUBE. Nevertheless,
enough requirement elements have been successfully addressed, and a starting point has
been created to perform the Cloud Native Plugin integration.

38 CHAPTER 6. SETUP A DISTRIBUTED PRODUCTION ENVIRONMENT

Chapter 7

Integrating Cloud Native Renew

The prototype discussed in this chapter deals with the integration of the Cloud Native
Plugin into the technical realization of the MUSHU architecture. This integration builds on
the technical realization provided previously in chapter B This prototype focuses on the
execution and documentation of the integration process of the Cloud Native Plugin. The
goal is to provide a guide to which later integrations of subcomponents can be directed.
The prototype was implemented in cooperation with the AOSE project team.

7.1 Requirements

The technical realization of the MUSHU architecture has already been modeled but has yet
to implement completely. To some extent, various components are still missing, such as
the Cloud Native Plugin described here. These components must be integrated into the
technical implementation at some point in order to achieve the goal of a complete technical
realization. Therefore, this prototype should have a variant of the technical implementation
in which the Cloud Native Plugin is present as an objective.

Since other components of the implementation are also missing, the integration of the
Cloud Native Plugin can be regarded as an example of the integration process. This way, the
various steps necessary to perform such integration are documented. The documentation
can be used to create a guide for further integrations to follow. The guide can prevent
specific problems or errors and provide a general direction for the integration process.
Therefore, the process of the integration of the Cloud Native Plugin should be documented
accordingly.

7.2 Specification

Initially, it should be documented which steps are necessary to integrate a new plugin
into the technical realization of MuUSHU. It should be analysed which already existing
components are affected by the integration and must be adapted. The adjustments that
are necessary for the integration of the Cloud Native Plugin should be documented. In the
end, a result should be presented showing whether the integration was successful or not.

7.3 Steps for Integration

Depending on which component of the technical realization of MUSHU is to be implemented,
different steps are necessary. In the case of the Cloud Native Plugin, a RENEW plugin is

39

40 CHAPTER 7. INTEGRATING CLOUD NATIVE RENEW

added to the worker instances. Primarily due to the preliminary work done in chapters H
and B, the integration process is moderately simple.

First, a Gradle build task must exist in RENEW itself, which combines the previously
used plugins from MUSHU with the Cloud Native Plugin and its dependencies. Attention
must be paid to the dependencies of the various plugins and issues that arise when using
specific plugins in containerized form.

A closer look at the Docker images follows. The Docker files must be adapted to use
the new Gradle build task, and any required environment variables must be set. It may
be necessary to adapt Docker images of components without direct dependency on the
component to be implemented.

In the final step of the integration, the documentation of the environment and the scripts
used must be adapted. Scripts are used at different places in the environment for setting
up and resetting it, as well as for the creation of Docker images. If environment conditions
or start commands have changed, these should be renewed. It is just as crucial that the
documentation for setting up and using the environment are updated. Since the existing
documentation is usually the first place for information about the environment, changes
should always be noted there directly.

7.3.1 Creation of Build Tasks

Since the Cloud Native Plugin is a RENEW plugin, a corresponding Gradle build task is
required that combines the plugins already required for MUSHU and Cloud Native. Be-
fore the integration, there were three build tasks used to implement MUSHU architecture:
‘renewkube_renew_ base’, ‘renewkube renew headless’ and ‘renewkube workstation’.

The Cloud Native Plugin is only needed for the worker instances. Therefore, a new
build task, ‘cloudNative worker’ was created in the first place. This can be used for the
creation of RENEW instances on worker nodes. For completeness, corresponding tasks were
created for the other two build tasks: ‘cloudNative headless’ and ‘cloudNativeCluster’.
Especially the ‘cloudNativeCluster’ build proved to be helpful. This build would be used
mainly for testing and developing remote nets, as this build includes the graphical interfaces
of RENEW.

In general, the build tasks for the cluster should not have any dependencies on plugins
that did not work in the cluster. For example, especially for build tasks that provide
containerized instances, there must be no dependencies on plugins that use or require a

GUL

7.3.2 Providing new Docker Images

Many of the components present in the cluster are implemented in containerized form.
Therefore, all affected images must be adapted during the integration. In addition, other
images may also be affected, for example, if startup commands or environment variables
are affected.

For integrating the Cloud Native Plugin, only one new Docker image was created for the
workers. This image was made available on the CI/CD serverd, The image is based on the
existing images for the worker created for RENEWKUBE. All existing images use different
scripts to install and start the RENEW instance, which had to be created accordingly.

!Container Registry: https://git.informatik.uni-hamburg.de/tgi/Renew/container_registry

https://git.informatik.uni-hamburg.de/tgi/Renew/container_registry

7.4. RESULT 41

7.3.3 Update of Scripts

As mentioned, scripts for installing and launching RENEW instances are used to create
the various Docker images. These scripts can be found in the resource folder of the RE-
NEWKUBE Plugin. If changes have been made to the RENEW build or startup command, a
new script should be created at this point for the corresponding component. The existing
scripts can be used as a basis for creating new ones. For the integration of the Cloud Native
Plugin, new scripts were created. The new image mentioned above could be created with
the existing Docker files and the newly created scripts.

In addition to the scripts needed to create Docker images, there are some scripts that
make setting up and restore the cluster easier. If the newly integrated component affects
those processes, these scripts and the documentation must also be adapted.

7.3.4 Updated Documentation

Another vital point is updating the documentation. The existing documentation in the
Confluence (Jan Henrik Réwekamp 2023) in the form of the already created step-by-step
guide or the short guides is essential to change if necessary. The Confluence pages are
the first place to go if problems occur or someone new works on the topic. Therefore,
documenting every change in usage or installation or additional steps necessary to use a
new component is crucial. For the Cloud Native Plugin, the changes in usage, startup
command, and installation were directly noted and integrated into the instructions and
startup commands.

7.4 Result

After all the steps were performed, the cluster could be started with the new image for the
worker. No problems occurred, and the Cloud Native Plugin was functional. Parallel to the
integration of the Cloud Native Plugin, the Status Monitor component was also integrated
into the environment, which uses the Cloud Native Plugin to display status information
about running instances. Since the Status Monitor is part of another thesis, it will not be
discussed here in more detail.

Figure @ shows the current status of the technical implementation of the MUSHU
architecture. Here again, the established design used in figure @ is kept. Compared with
the result in figure @ of chapter [, the Cloud Native Plugin component and the mentioned
Status Monitor component were added. The remaining structure of the environment has
not changed.

It is noticeable in figure @ that the RENEW instance in the workstation also requires
the Cloud Native Plugin. This has the reason that in the following chapter E, the usage
of the Cloud Native Plugin was extended. Thus it is possible to use the Cloud Native
Plugin functions directly from the simulation context. For this to work, the Cloud Native
Plugin is also required in the workstation instance. The technical implementation was
straightforward because the corresponding build task was already created in .

42 CHAPTER 7. INTEGRATING CLOUD NATIVE RENEW

Cluster master clcbD
------- —— N . Server
I h » Image Registry

|

|
I Clustermanager I:
| I
|

A 4

Cluster (logische Einheit)

- :’ _____ & Worker Knoten Worker Knoten
L - m === AN
Management- Anbind Headl 1
M System Plugin Renew | e
v = - % 1 ;:I d Nati |
A Kommunikations- oud Native L ’
| medium |<- |Renew plug-in Distribute Plugin
DB = T — 3y 3y Y
......... A

Monitor Knoten

Status Monitor [*

Y

A 4

andi Kommunikation
LA 4 Logische Einheit Vollstandlg neu e g r

Anbindungs- Distribute zu konstruieren zwischen A und B

Plugin Plugin Physikalische [= T Y Neuin diesem = = m Weitere Komponenten
Maschine s | Kontext . dieser Art existieren
Renew mit GUI 4 Containerisi R
. ontainerisierte Renew Plugin
Cloud Native Anwendung
Workstation |y IR .
Anwendung (nativ)

Figure 7.1: The current implementation of the technical realization of the MUSHU archi-
tecture in the production environment.

Datenbank

7.5 Evaluation

The evaluation of this prototype first deals with documenting the limitations, where aspects
are outlined that were not considered during the integration. In addition, the limitation of
the validation of the integration is mentioned. Furthermore, in this section, the evaluation
occurs regarding the developed requirements in chapter B for this prototype.

7.5.1 Limitations

Since the exemplary integration of the Cloud Native Plugin was carried out in this proto-
type, mainly the steps necessary for this purpose were described and documented. Many of
the MUSHU architecture components that are still to be integrated have individual prob-
lems that must be considered during their integration process. Thus in section also,
some general problems and obstacles were pointed out.

Another limitation of the integration is the validation of the integration. To verify avail-
ability, selected features of the Cloud Native Plugin were tested. Especially the provided
endpoints for log output and status information were primarily used to verify the integra-
tion. This also includes the integration of the status monitor, which also uses the same
endpoints of the Cloud Native Plugin for information retrieval in the current development
phase. Even though the availability of these endpoints shows that the plugin is accessible in
the cluster, no statement can be made about the other functions of the plugin at this point.
Prototype g will therefore take a closer look at the validation of the integration process.

7.5.2 General Evaluation

The prototype deals primarily with the requirements R7 and R8. On the one hand, the
actual integration of the Cloud Native Plugin into the technical realization of the MUSHU

7.5. EVALUATION 43

architecture should be carried out. On the other hand, a kind of manual should be created
to be used as a basis for further integrations.

Both requirements are dealt with in the section @ In the section, the integration of the
Cloud Native Plugin is described step by step. The different stages of the integration are
described, and possible problems are pointed out. In addition, the result of the integration
is presented in [7.4, which fulfills the requirement R7.

The requirement R8 was only fulfilled to a considerable extent in this prototype. The
description of the necessary integration steps focuses on the Cloud Native Plugin. As men-
tioned, other possible obstacles are also pointed out, covering only some possible problems.
As described in the limitations, this is primarily because the integration process of the ad-
ditional components is very individual, and it is not foreseeable what problems one might
encounter. Nevertheless, the presented steps in section @ should show the generally nec-
essary steps for all remaining components. Therefore, the requirement RS is considered as
fulfilled.

44

CHAPTER 7. INTEGRATING CLOUD NATIVE RENEW

Chapter 8

Extension of the Cloud Native Renew
Usability

So far, the functions of the Cloud Native Plugin have been presented in chapter @ and
validated via their respective HTTP interfaces in the context of (Rowekamp, Taube, et al.
2021)). The next step is to validate the usage of the plugin from a reference net context.
For this purpose, a focus will be placed on using the plugin with the RENEW software.

In the target scenario, the Cloud Native Plugin should enable someone to develop a
reference net for distributed simulations. For this purpose, it makes sense to validate how
the plugin functions can be used inside the reference net context. This extension of the
usability is presented in this chapter.

Some elements were developed in the context of the AOSE project with the help of
a small team of developers. Parts developed in this collaboration’s context are marked as
such.

8.1 Requirements

An essential element to validate something are examples. Therefore, examples for the Cloud
Native Plugin will be created. A simple example should be provided in which the plugin’s
functions become apparent and how someone can use it when developing reference nets.

It should be determined how to incorporate the provided function in the development
process of reference nets. This includes a discussion about the different possibilities to
create example nets to determine which variant is the most suitable.

In addition, it should become understandable how these examples are created so that
more can be developed in the future. Furthermore, it should be documented which special
requirements exist for which type of example net so that they can be better created and
understood.

8.2 Specification

When creating examples, there is always the question of how exactly the examples should
be. In addition, all examples have the requirements that they are self-evident. Therefore,
attention must be paid to the best variant to create these examples.

In this chapter, first the preliminary work from the work phase is taken up again, and
it is documented which results were produced there. This mainly refers to the discussion
about what the best way is to create examples for the Cloud Native Plugin. In addition,
the plugin’s extension is documented, which was necessary for creating the examples.

45

46 CHAPTER 8. EXTENSION OF THE CLOUD NATIVE RENEW USABILITY

This is followed by an elaboration of the preliminary work of the work phase. A structure
is given to how examples can be built in the context of the Cloud Native Plugin. In addition,
examples are created that can be used in the minimal context, as well as in the distributed
context.

Partially, these results were also developed in cooperation. All content to which this
applies is marked as such.

8.3 The best Way to Create Examples

work phase described in {l in cooperation with Jan Henrik Rowekamp. The implementation
and development of the examples were done independently.

The discussion generally concerns creating example nets for the Cloud Native Plugin.
But these should also serve as a basis for testing the entire MUSHU architecture. Several
possibilities have been considered. Three approaches are compared, each with advantages
and disadvantages. It was decided on a variant in which the Cloud Native Plugin had to
be extended.

The further development is also documented in this chapter. Likewise, documentation of
the example net production for the Cloud Native Plugin and the documentation of specific
examples follows after this section.

The discussion on cream@g sample nets for the Cloud Native plugin was created during the

8.3.1 Different Types of Example Nets

At first, the creation of example nets with the system software Curl is analyzed. This is
followed by the possibility of net creation, focusing on the implementation in RENEWKUBE
and the RENEWKUBE manager. The last option describes the Cloud Native Plugin exten-
sion to provide an abstract class as in interface for its functions. In the end the last option
was chosen as the best way to create example nets.

Example Nets with Curl

The first idea for creating sample meshes has been to use the curl command. Curl 0 i
a command line tool which is capable to make HTTP requests. This function would be
sufficient for interacting with the Cloud Native Plugin.

In Java, it is straightforward to run command line commands, with the provided Run-
time implementation. Since the reference nets can execute all Java code, this option would
have been the fastest to implement. However, after briefly testing the feasibility of this
option, it became clear that it was not very practical.

The biggest problem was the interpretation of return values. Using command line tools
like Curl makes it hard to work with return values, because of the nature that they need
to be executed with the Java ‘Runtime.exec()’ function. So the further use of different
return values and statuses of a specific HI'TP request would not be possible without a
more complex net. Another problem was that the curl commands became very long. This
is especially true when multiple requests are made to the Cloud Native Plugin in succession.

The fist problem represents a source of error or significant additional work. The other
problem contradicts the requirements of the example nets that it needs to be easy to
understand. Therefore, it was relatively quickly decided against using curl commands, and
further possibilities for implementation were considered.

1Link to the Curl Website: https://curl.se

8.3. THE BEST WAY TO CREATE EXAMPLES 47

Curl Request

manual

o 1
O, o] O
action request = "curl -X POST http://localhost:8098/upload/plugin ";
action requestData = "--data pluginName='Renew PrimeCompute'&override="true'&pluginJarFile=@C:/Users/Alex/Desktop/de.renew.primecompute-0.1.jar";

action process = Runtime.getRuntime().exec(request+requestData);

String request;
String requestData;
Process process;

Figure 8.1: Example net of using a curl request to upload a plugin

However, it should be noted that it is possible to interact with the Cloud Native Plugin
using curl commands. In figure can be seen how the upload function from Cloud Native
Plugin would look like using Curl. The whole functionality is in the transition, which
assembles the Curl command and later executes it with the Java ‘Runtime.exec()’ function.
Note that the parameters for ‘IP’, ‘Port’, ‘PluginName’, and ‘PathToPluginJar’ are written
directly into the request.

Example Nets via RenewKube and RenewKube Manager

The next option would have been to outsource the logic from the request to the RE-
NEWKUBE plugin. Outsourcing is possible because each RENEW instance, i.e., each node,
provides the same endpoints. To send a successful request, only the address and port of
the target and source node would be needed.

The RENEWKUBE manager would be the first choice because it knows the addresses
of all nodes. Therefore, it would be possible to provide functions in the RENEWKUBE
manager, which would then be used in the sample network for the request.

However, this approach presents some problems. The first problem is that it contradicts
the conception of the MUSHU architecture. If one were to implement this variant in such a
way, the RENEWKUBE manager would act as the intermediate instance for each communi-
cation between two RENEW Nodes. However, this is not intended in the architecture. The
RENEWKUBE manager is intended to act as a manager for the cluster, particularly as a
coordinator for scaling and not as a communication medium. Another problem would be
that the Cloud Native Plugin would not have any sample nets available if it is used in a
standalone variant.

Since this variant of the implementation is incompatible with the concept, there is also
no further implementation. It would theoretically be possible to extend the RENEWKUBE
manager to take over the communication. However, this would have to be implemented in
the RENEWKUBE manager, before it could be used in a sample net for the Cloud Native
Plugin.

Example Nets with internal Cloud Native Renew Functionality

The last option involves the idea that the Cloud Native Plugin provides the desired func-
tionality. This means that the Cloud Native Plugin provides functions that can be used in
a reference network to complete a request.

This variant has several advantages. On the one hand, the Cloud Native Plugin acts as
a receiving and sending source. Furthermore, executing requests to itself is possible since
its own IP can be used as the target IP. Since the functionality is implemented in the
plugin itself, the function would still work in a standalone scenario. Another advantage is

48 CHAPTER 8. EXTENSION OF THE CLOUD NATIVE RENEW USABILITY

that a lot of logic can be abstracted. So only one function in a reference net has to be used
to interact with the API. This makes an example clearer and easier to understand.

On the other hand, this possibility also has disadvantages. The abstraction of the func-
tionality is advantageous for the initial understanding, but the exact functionality cannot
be recognized without a closer look into the source code. The most significant disadvan-
tage is that an additional effort in the development arises since every function must be
abstracted.

8.3.2 Outcome

After considering which version is best for creating examples for the Cloud Native Plugin,
the third version, creating examples with internal functions, was chosen. Evaluating the
pros and cons of all versions was ultimately the reason for this decision.

By choosing this variant, extending the plugin was an additional effort. The plugin
needed an abstraction for every function used for example nets. However, it is advantageous
because the plugin’s extension makes it easier to use it in a reference net overall.

The plugin has already been extended in the described work phase in chapter @ The
extension will be explained in more detail in the next section. A resulting advantage is
that the functions for reference nets can be extended after need. Therefore, the additional
expenditure for the development is not that great, since changes would only appear if the
function is desired to use inside of an refreence net.

The resulting examples are presented at the end of this chapter. In addition, an overview
of how to proceed to create further examples is given.

8.4 Cloud Native Renew Plugin Extension

This section documents the extension made to the Cloud Native Plugin. The extension’s
functionality is explained, and it is shown what precisely it brings and why it is necessary
to use it.

The section is divided into two parts. First, the basic extension is considered. Here the
focus is on the elaborated contents from the working phase. These results in this subsection
have been developed in collaboration with Jan Henrik Rowekamp. The second part of this
section deals with the changes to the extension, which have been developed during this
thesis.

8.4.1 General Extension

The extension aims to provide methods that can be easily used in a reference net. The
functions execute the request to the remote Cloud Native API and work with parameters
that are passed to them. The focus of the implementation was the upload and start of
plugins on a node.

The general functions for the extension can be found in the module ‘NetRequest’ in
the Cloud Native Plugin. The core implementation is in the ‘NetRequest’ class. This class
provides functions that can ultimately be used in reference nets.+

In addition, The ‘HealthMetricReply’ class was created to provide a JSON template
to make response evaluation easier. The health metrics can determine which plugins are
present on the requested node.

A more_detailed overview of the implemented functions can be found in the following
subsection @

8.4. CLOUD NATIVE RENEW PLUGIN EXTENSION 49

Fields
IP and Port Plugin Name and Path to .jar
["localhost",8098] "8:/Projekte/Uni/Abschlussarbeit/Renew/CloudNativeSpring/src/main/resources/samples/samplePlugin/de.renew.primecompute-0.1.jar"
[IP,PORT] PATH
Combine Request

|
[IP,PORT, PATH]

wrroreath - Ensure Plugin Availability

import de.renew.unify.*;
import java.io.File;
manual action result = NetRequest.instance().ensurePluginAvailableOnNode(IP, PORT, PATH); import de.renew.cloudnative.spring.netRequest.NetRequest;
result /’D =O String IP;
result guard result; String NAME;
String PATH;
result i !
I Ll int PORT;
guard Iresult; boolean result;

Figure 8.2: Example net of ensure plugin availability on a specific Cloud Native Renew
Node

8.4.2 Explicit Extension

This subsection will take a closer look at the functions implemented around the ‘ensure-
PluginAvailableOnNode’ function, and the resulting example nets. A total of 4 different
example nets were created for different Cloud Native RENEW functions: Plugin Upload,
SNS Upload, Simulation Start, and Simulation Control. Parts of this implementation have
been developed in cooperation with the AOSE project group.

Ensure Plugin Available On Node

First, the ‘ensurePluginAvailableOnNode’ example was created, which can be seen in fig-
ure 8.2. This example was already created before the work in the AOSE project context
and served as a basis for the following examples. The created net can be used to guarantee
that a plugin is available and loaded on a node. For this purpose, the method is passed the
node address and port, as well as the plugin name and .jar file. The plugin .jar is passed
to the method as a path. The method first checks whether the plugin already exists on the
desired node. To do this, a request is sent to the Cloud Native API of the addressed node,
which queries the health metrics. If the plugin is not available there, the plugin is uploaded
to the corresponding node via a new request and then loaded. Finally, it is rechecked if the
plugin is available on the node. The functions response with a boolean value to express if
the desired plugin is now available on the desired node. Those return values can then be
used in the reference net for further simulation.

Upload SNS

Next, the UploadSNS example was created, which can be seen in figure . This example
was created in cooperation with the AOSE project. The basis for this example is the
provided functionality of the Cloud Native Plugin to upload nets to a RENEW instance.
As before, the IP and port of the target instance are required for this function. In
addition, the path to the .sns file must be specified. The last parameter to be specified is
the SNSDescription, which sets the name of the SNS on the target instance. The structure
of the example in figure is very similar to the example in figure @ The parameters
are assembled at the beginning of a request, which are then passed to the created method

50 CHAPTER 8. EXTENSION OF THE CLOUD NATIVE RENEW USABILITY

Fields

IP and Port
["localhost",8098]

[IP,PORT]

SNS Name and Path to .sns
["test", "C:/Users/kirov/OneDrive/Desktop/delete/two.ss"]

[SNSDescription, PATH]

Combine Request

|
[IP,PORT,SNSDescription, PATH]

[IP,PORT,SNSDescription,PATH]
|

Upload SNS

result
result

result

manual [lr_l action result = NetRequest.instance().uploadSNS(SNSDescription, PATH, PORT, IP);

/'D WOF

guard result;

Failure
guard !result;

import de.renew.unify.*;
import java.io.File;
import de.renew.cloudnative.spring.netRequest.NetRequest;

String IP;

String PATH;

String SNSDescription;
int PORT;

boolean result;

Figure 8.3: Example net of uploading a SNS file on a specific Cloud Native Renew Node

uploadSNS in the ‘netRequets’ class. In the method, the HT'TP request is made to the
corresponding target instance, and a True or False value is returned depending on the
response. As before, the return values can be used further in a reference net or to show
whether the upload was successful.

Start Simulation

The Cloud Native Plugin provides a separate endpoint for starting a simulation. For this
reason, there is also a separate example net for starting a simulation, which can be seen in
figure 8.4. This example was also created in cooperation with the AOSE project.

As seen in figure 8.4, parameter once again must be set. IP and port parameters do not
differ from the function of the other examples. Additionally, the name of the SNS, which is
located on the target instance. must be specified. This can be the parameter SNSDescription
from the example in figure if an SNS has been uploaded before. Furthermore, the name
of the net from which to start the simulation needs to be given as a parameter.

The method, executed in the manual Transition in the network, is similar to the other
examples. Thus, an HT'TP request is executed on the corresponding StartSimulation end-
point of the target instance. Depending on the HTTP response, a corresponding return
value is set. This is passed back to the network and can be used further.

Control Simulation

The last example shown in figure @ is for the simulation control function of a RENEwW
instance. This example was also developed in the AOSE project. Like before, it is necessary
to specify the IP and port of the target instance. Additionally, only one more parameter
is needed to send the simulation control instruction. There are three options: term/stop
for stopping the simulation on the target instance, run/start for starting the simulation,
and step for switching a transition. As with the other examples, the implemented method
does nothing more than submit an HT'TP request to the target instance with the selected
parameters. Upon this, the method rules with appropriate return values for successful
execution.

8.4. CLOUD NATIVE RENEW PLUGIN EXTENSION 51

Fields

IP and Port
["localhost",8098]

mainNet Name (no .rnw in the end) and SNS-file Name (.sns)
["two","two.sns"]

[IP,PORT] [mainNet,SNS]
Combine Request
[
[IP,PORT,mainNet,SNS]
terorTmannetsis) - Start Simulation
manual action result = NetRequest.instance().startSimulation(mainNet, SNS, IP, PORT);

result

O

result guard result;

result Failure

guard Iresult;

import de.renew.unify.*;
import java.io.File;
import de.renew.cloudnative.spring.netRequest.NetRequest;

String IP;
String SNS;
String mainNet;
int PORT;
boolean result;

Figure 8.4: Example net of starting the simulation on a specific Cloud Native Renew Node

IP and Port
["localhost",8098]

[IP,PORT]

Fields
Control Variable (term, run, halt, step, stop)
"term"
VAR

Combine Request |

|
[IP,PORT VAR]

[IP,POIIRT,VAR] Control Simulation
manual action result = NetRequest.instance().controlSimulation(VAR, IP, PORT);
result /’D =O S

result guard result;

result Failure

guard !result;

import de.renew.unify.*;
import java.io.File;
import de.renew.cloudnative.spring.netRequest.NetRequest;

String IP;
String VAR;
int PORT;
boolean result;

Figure 8.5: Example net of controlling a simulation on a specific Cloud Native Renew Node

52 CHAPTER 8. EXTENSION OF THE CLOUD NATIVE RENEW USABILITY

8.5 Evaluation

First, it will be discussed how the result from the discussion in section @ has affected
this prototype and whether the right decision was made. Afterward, the evaluation occurs
regarding the established requirements from chapter B and in particular for requirement
RO.

8.5.1 Methods of creating Cloud Native Renew Examples

In section , three different options were mentioned to improve the usability of the
Cloud Native Plugin in the context of its usage in reference nets. The variants with the
implementation via Curl request and own abstraction class were described in more detail.
In this subsection, we will evaluate why it was decided to create an abstraction class and
not to use the Curl implementation. The third possibility with the implementation inside
the RENEWKUBE manager is not considered further here since this was already removed
at the beginning of the decision process.

Problems were already mentioned in , which describes why the Curl request is
unsuitable for the requirements. In the end, precisely, these problems were the reason for
the decision to not implement Curl request. With the production of additional example
nets, defining much overhead code in the reference nets for the most basic functions would
have been necessary. Especially the response handling, the problem would have arisen that
each function would need its sequence of checks. Both points listed here are detrimental to
the goal of making the functions readily available and understandable.

In the end, the implementation with an abstraction class was chosen. Besides the
advantages explained in section also, possible disadvantages were also determined. One
disadvantage was that the more profound understanding of how the functions is needed
and the response handling is no longer easily understandable. But it has been shown that
the good documentation of the endpoints of the Cloud Native Plugin and the source code
documentation of the abstraction class did not reduce the understanding. The second
problem was that the extension of the Cloud Native API led to the fact that the created
abstraction class must also be extended. However, this extension is a small expenditure.
Thus students in the AOSE 22 project could extend the abstraction class independently
after an exemplary abstraction class was implemented.

8.5.2 General Evaluation

The prototype addresses requirement R9 defined in chapter a It was required that the
Cloud Native Plugin functions are made usable from the context of reference nets. The
reason behind this requirement is that simulations for the cluster can be created more easily.

This prototype has looked at three variants of the possible extension to meet the re-
quirement. The decision of which is the best variant was documented and evaluated in
section . In addition, the extension was used to create examples for the four most
essential functions in the cluster: Plugin Upload, SNS Upload, Simulations Start, and
Simulation Control.

The successful creation of the examples shows that the functions of the Cloud Native
Plugin can now be used from inside a reference net context. In addition, the examples
serve as a tool for directly using the desired functions in later instances in the cluster.
Furthermore, the examples created also fulfill the documentation aspect required by R9.

Chapter 9

Validation of the Cloud Native
Renew Plugin

After the integration from Cloud Native Plugin in chapter H, this chapter validates this
integration. The goal is to show that the provided product environment from chapter [is
in a working state and that the actual integration performed in chapter [| was successful.

If the validation is successful at this point, it is clear that the integration of the Cloud
Native Plugin as well as the setup of the production environment has been successful. Thus,
a new foundation has been created as a starting point for further integrations.

9.1 Requirements

An excellent way to validate components or systems is to show good use cases. In this thesis
context, creating an example reference net is helpful because it fulfills two requirements
simultaneously. First, a working example shows that the newly integrated functions are
available in the cluster. This availability would thus validate the successful integration of the
Cloud Native Plugin. Second, would it also validate that the environment is functional. In
the context of this thesis, this would mean that the recovery of the production environment
in chapter § has been as successful.

Besides that validation, an example can also be used for documentation purposes. Since
examples are usually easier to understand than textual explanations. This documentation
would thus also provide some guidance for further integrations in the future.

9.2 Specification

For the validation, the goal is to use a coherent example based on reference nets. As
a starting point, an example has already been developed in the context of RENEWKUBE
from (Réwekamp and Moldt 2019). This example will be enriched with the created examples
from chapter § to integrate the functions of Cloud Native Renew.

9.3 Creation of a Coherent Example

The basis of the validation is a coherent all-in-one example to be executed on_the clus-
ter. This is based on the examples first created in the context of (Rowekamp 2023h) as
part of the RENEWKUBE demonstration. The original examples can be found inside the
provided virtual machine images after following the setup guide on (Rowekamp 2023h), or
in the RENEWKUBE folder of the RENEW repository. Two reference nets were created,

53

54 CHAPTER 9. VALIDATION OF THE CLOUD NATIVE RENEW PLUGIN

which were intended to demonstrate the interaction between the host and remote instance.
Furthermore, the examples created in chapter §, which show the Cloud Native Plugin func-
tionalities, were integrated into the all-in-one example to validate the integration of the
plugin. The changes in the two nets are discussed in more detail in the following sections.
In addition, the simulation process is examined in more detail to show which functions are
executed and how that affects the state of the cluster.

9.3.1 Created Reference Nets

The all-in-one example consists of two components. A system net that is intended for the
primary instance and user interface, and a remote execution net will be executed on the
remote RENEW instance.

Main System Net

In figure @, the mentioned main system net can be seen. This reference net is intended to
be specified by the user to set up the primary prerequisites for the remote instance. The
elements in the upper third in figure are shown, which were taken from the original
example. In the center part of it, this system net is registered at the Distribute RMI, and
a random number is created. Then the call to the remote instance is controlled with the
:getWork() transition. In the right part of the upper third, the return values of the remote
instance are collected, and the results are stored. The left top part shows the required
dependency for the Java code execution.

import de.renew.renewkube.*;
import de.renew.distribute. DistributePlugin;

import java.util.Random;
import de.renew.net.*;
RenewKubePlugin rk;
Random r;

int work, sc;

Netlnstance pluginUploadNet, snsUploadNet;

int PORT;
String IP, workOut, var;

String pathToPlugin, pathToSNS, snsDiscription;
String mainNet, snsFileName;

Please start the simulation while having
this window focused (Hit Ctrl/Cmd + R)

H action r = new Random();

r

register registered r
O——1+—0O——11

action DistributePlugin
registerNetinstance("simpleDistributorCloudNative, this);

-getWork() <- r.nextint(20000)
<- work will be fetched here
by remote instances (takes
some time initially)

Output von Worker

:workDone(workOut);

workOut

<-finished work
appears here

IP and Port Path Plugin to jar

[IP,PORT] pathToPlugin

pluginUploadNet —(_)

pluginUploadNet: new PluginUploadCluster;
pluginUploadNet:init(IP,PORT,pathToPlugin);

Plugin Upload

1P and Port SNS Name and Path to .sns

[IP, PORT] [snsDiscription, pathToSNS]

snsUploadNet —-O

snsUploadNet: new UploadSNSCluster;
snsUploadNet:init(IP, PORT, snsDiscription, pathToSNS);

SNS Upload

O IP and Port .
['134.100.7.102",8098] Input Fields
O Path Plugin to .jar
"./Cl i i g renew. 0.1.jar"
O Control Variable (term, run, halt, step, stop)
"halt" “run"

mainNet Name (no .rnw in the end) and SNS-file Name (.sns)

O ['simp t ive","simpl ive.sns']
SNS Name and Path to .sns

O ["simpl ive", "./Cl impl ive.sns']

IP and Port mantietiansandNelaNans 1P and Port Control Variable

[P, PORT] [mainNet, snsFileName] (IP, PORT] vai
startRemoteSimulation — @ LT -0

manual

new luster;
startRemoteSimulation:init(IP, PORT, mainNet, snsFileName);

Start Simulation

new
controlRemoteSimulation:init(IP, PORT, var);

Control Simulation

Figure 9.1: Main system net for the all-in-one example

The blue highlighted area ‘Input Fields’ in figure @ defines specific settings for the
environment and remote instance. First, the IP as a string and the port as an integer from
the remote RENEW instance are specified. The next element is the path to a pre-compiled
plugin .jar file. The path can be specified as relative or absolute as a string type. In
this example, the PrimeCompute Plugin is used, which the remote execution net needs to

9.3. CREATION OF A COHERENT EXAMPLE 55}

calculate if a given integer is a prime number. Next, the simulation control commands are
specified. Those commands can be used to control the simulation of the remote RENEW
instance. Only the commands ‘halt’ and ‘run’ are used in the example, but all commands
mentioned in section m can be used. The second to last item specifies the name of
the .rnw net to be executed by the remote instance. In addition, the name of the SNS
under which the SNS was uploaded to the remote instance is specified here. The last item
specifies the exact name under which the SNS should be stored on the remote instance
and an absolute or relative path to the SNS file. In the example, the SNS information
refers to the remote execution net, which will be described next. Unless otherwise noted,
all information from the input fields should be of type string.

Fields
:init(IP, PORT, SNSDescription, PATH)
IP and Port SNS Name and Path to .sns
[IP,PORT] [SNSDescription, PATH]
[IP,PORT] [SNSDescription, PATH]
$ Combine Request
I
[IP,PORT,SNSDescription,PATH]
[IP,PORT,SNSDescription,PATH] Up|oad SNS
|
import de.renew.unify.*;
.) . import java.io.File;
manual action result = NetRi 1stance().uplc Description, PATH, PORT, IP); import de.renew.cloudnative.spring.netRequest.NetRequest;
result /’D—O Succes String IP;
result guard result; String PATH:
String SNSDescription;
result\D—.‘ . g ption;
I Lailue int PORT;
guard lresult; boolean result;

Figure 9.2: Modified upload SNS net for the all-in-one example

The last component of the system net are the yellow highlighted areas. The respective
areas cover a function of the Cloud Native Plugin and use a slightly modified variant of the
sample nets created in section . The basic structure of the net is always the same. A
net instance of the respective function is created and enriched with the defined parameters
from the Inputs Fields area. It is important to note that virtual places are used for passing
on the parameters so that the contents can be used several times. After the execution of the
transition, an instance of the respective net is created and executed. In figure @ is once
exemplary the modified variant of the Upload SNS function to see. The basic structure
and function is identical to the variant created in figure @ The only difference is the
transition with the remote call:init()’, which is executed from the system net to fill the
locations with the appropriate values for IP, Port, SNS Name, and Path to SNS. It should
also be noted that the manual transition is still present in all four components, so when
running the simulation the user has to switch the single transitions of the nets manually.

Remote Execution Net

The second example is the Remote Execution net. As shown in figure @, it is not so
different from the original RENEWKUBE example. The area with the white transitions
and places regulates the periodical request to the Distributor RMI form the system net
instance. The green area is responsible for the processing of the workload. This consists
of a thread sleep in dependence on the random number given by the system net. The next
step determines whether the passed number is a prime number. An important point to note
here is that the prime number is determined with the help of the PrimeCompute Plugin,
which has been added to the original net. After the processing, a modified result is passed

56 CHAPTER 9. VALIDATION OF THE CLOUD NATIVE RENEW PLUGIN

to the system net containing the random number and the information if the given number
is a prime number.

import de.renew.distribute.DistributePlugin;
import de.renew.distribute. DistributeNetInstance; (This is executed remotely)
import de.renew.primecompute.*;
DistributeNetInstance d;

int work;

Info: The instance every remote
instance starts with must always
be called "remoteStart" to function!

PrimeCompute p;
String workOut;
boolean worklsPrime;

guard d == null;
actlon Thread.sleep(1000);

= retry
retrieve dlstrlbutor dlgetWork() -> work
d ﬂ:’—work
action d = DistributePlugin

.getNetInstance("simpleDistributorCloudNative"); /CDA/

work
d!workDone(workOut);

workOut

getDistributor

action Thregd.sleep(work);
work

workOut

action
p = new PrimeCompute();
action worklsPrime = p.isPrime(work);
action workOut = "Work: " + work + ", is prime: "+ workIsPrime;

Figure 9.3: Remote execution net for the all-in-one example

9.3.2 Simulation Process

In this section, the simulation process of the shown nets is described. Particular aspects
are pointed out, and a reference to the validation is made. In addition, it is described how
the state of the remote RENEW instance changes. The described simulation was executed
in the ART Lab on ART PC 15 as master and ART PC 2 as a remote instance.

To start the simulation, the system net and the individual subnets for the Cloud Native
functions must be loaded in the RENEW instance. Then the simulation need to be started
with the system net as the main net. After the instance has been registered with the
Distribute RMI, it waits for a result from a remote RENEW instance. At this point, the
remote RENEW instance has no active simulation, the Remote Execution net is unavailable,
and the required PrimeCompute Plugin is not loaded.

Since the subnets of the Cloud Native functions have a manual transition, they have
to be triggered manually. The sequence of that is important in some cases. For example,
the simulation must have been started before the simulation can be controlled. Likewise,
the Remote Execution net and the PrimeCompute Plugin must be available on the remote
instance before the simulation can be started.

If a Success is returned by the subnets, only the viewpoint from the host RENEwW
instance is considered. For example, a subnet return success if the request to the remote
instance was made and accepted. There is no error handling implemented should the remote
instance run into an error state after the response to the request. The only exception is the
EnsurePluginAvailability net in figure 8.2, which guarantees that a plugin is available and
therefore checks if the request was handled successful.

9.4. EVALUATION 57

On the remote instance side, the following occurs after the plugin upload, SNS upload,
and simulation start command are executed from the host instance. First, the system
net instance is fetched from the Distribute RMI, and the workload (a random number)
is received there using the :getWork transition. After a ThreadSleep in the length of the
random number, the uploaded PrimeCompute Plugin is used to check if the random number
is a prime number. The result is then passed back to the system net.

In the system net, at this time, results are coming into the ‘Output from Worker’ area.
It can happen that it take up to 20 seconds to for results to show up. This is because of the
random generate integer, which can reach upto 20000, is passed to the remote execution
net and the corresponding thread sleep in milliseconds of that random generated number.

It is possible to pass two commands, ‘halt’ and ‘run’ to the remote instance with the
Control Simulation component to stop and restart the simulation. Each time a command
is executed, a new net instance of the Control Simulation net is created. The transition
should be bound manually to decide which command to execute, otherwise the selection is
non-deterministic.

9.4 Evaluation

The evaluation of this chapter is divided into two parts. First, reference is made to the
limitations of the validation. It explains which elements still need to be validated in further
instances. Then it is evaluated once how the prototype fulfilled the established requirements
in chapter E

9.4.1 Limitations of the Validation

The focus of this validation was set on the Cloud Native Plugin integration into the pro-
duction environment. The previous functions of auto-scaling of the RENEWKUBE Plugin
were not considered here. Thus, this represents the scope and limiter of this validation.
The all-in-one example shows that the framework of the production environment is usable.
It also shows the usability of the Cloud Native Plugin functions. However, the focus on
combining direct interaction with RENEWKUBE functions has yet to be considered further
here.

The reason for the limitation of the validation was that, at the time of this thesis,
the recovery of all RENEWKUBE functions still needed to be completed. Should the RE-
NEWKUBE integration be completed later, the example created can be modified with minor
modifications so that the RENEWKUBE functions are also validated. The only change that
would have to be made would be the assignment of the input fields that are currently en-
tered by the user. If RENEWKUBE works, these fields could be filled in by the RENEWKUBE
Manager and would no longer have to be entered manually.

9.4.2 General Evaluation

The prototype described in this chapter deals with requirement R10 developed in chapter E
The goal was to show the interaction between the Cloud Native Plugin and the production
environment. Therefore, the requirements were set up to create a coherent example and
corresponding documentation for the usage.

Using a coherent example as validation for successful integration is especially useful in
the case of RENEW. This is because, by using previously unusable functions, the example
shows that the plugin’s integration has been successful and, at the same time, how to use
them in the future, should one want to build on them.

58 CHAPTER 9. VALIDATION OF THE CLOUD NATIVE RENEW PLUGIN

Furthermore, such an example also serves the purpose of documentation. In addition
to the summary, the content of this chapter is also the basis for the documentation of the
use of the example and, thus, the use of the functions or the production environment.

Since the example was also created with the tools provided by RENEW, this shows that
the software’s fundamental functions still work. Another advantage of creating an example
in the RENEW context was that the users were familiar with the environment and thus
were more likely to develop an understanding of the use and presentation of the example.
The integration could have been also done with a sequence of HT'TP requests and their
evaluation. However, this would not have been very descriptive or easy to understand and
would not have contributed to the documentation of the use of the plugin.

Finally, to refer to requirement R10, a successful demonstration of using the new func-
tions was achieved. Thus, a successful integration is validated, and the level of documen-
tation was increased.

Chapter 10

Evaluation

In this chapter, I will evaluate in what matter the integration of the Cloud Native Plugin
has been successful. Further, it will be evaluated how far Cloud Nativity aspects are now
present on the cluster. In addition, it will also refer to the overall work and working method
and evaluate how helpful it has been for this thesis. Finally, I will refer to the requirements
set up in chapter a to see if the developed requirements were fulfilled.

10.1 Cloud Native Aspects

As already described in chapter E, there are four know aspects of Cloud Nativity, agility,
operability, observability, and resilience. The success of integrating Cloud Nativity aspects
into the cluster environment can be seen best by individually examining them. It will be
shown which components of the cluster contribute to the fulfillment of Cloud Nativity.

10.1.1 Agility

The Cloud Native Plugin has almost no direct influence on the agility aspect. The only
thing that the plugin has improved directly is the individual deployment of nodes. This
means that heterogeneous nodes with different RENEW plugins can be created very quickly,
which is now also possible from context of reference nets.

In the cluster, the agility aspekt can be found in the separate development of different
component and RENEW plugins. These plugins are developed in small steps and will be
further encapsulated with the RENEW release 5.0.

If we look at the technical realization of the MUSHU architecture, the agility aspect can
also be seen in the usage of the GitLab CI/CD instance. The individual Docker images are
provided there, which then only have to be brought into the cluster.

The development in RENEW, and consequently in the Cloud Native Plugin, is organized
according to the current software development standards. Large parts of the software has
been developed in the context of Scrum.

In general, one can say that the aspect of agility applies to the cluster. Even if there is
still more potential for expansion, a lot has been achieved to make the system more agile.

10.1.2 Operability

The goal of this aspect is that the system can be controlled at any time. The Cloud Native
Plugin plays a significant role in fulfilling this operability aspect.

Since the plugin is present on every node, the functions provided by it are on every
RENEW instance in the cluster. In terms of operability, the plugin main purpose is to

29

60 CHAPTER 10. EVALUATION

provide control functions. These include adding and removing plugins, uploading and
starting nets, and having complete control over the simulation. The functions are accessed
through a Java Spring instance provided by the Cloud Native Plugin.

Java Spring provides an HTTP interface for this purpose. This allows easy access to a
worker instance from the outside. It must be mentioned here that “external” in this context
means, being in the same network as the cluster.

To evaluate how successful the integration of the operability aspect was, it makes sense
to look at the workflow of a plugin upload before and after the integration of the Cloud
Native Plugin. Before the integration, there were two options to add a plugin on a worker
instance. One was to provide a complete new Docker image containing the desired plugin.
The image would then have to be deployed before the worker node was initialized.

The other option was to add it manually via the RENEwW CLI, which would require
direct control of the worker instance. After integrating the Cloud Native Plugin, is now
possible to use the following workflow. Required for that is knowledge about the IP address
and Port of the worker, which can be found in the RENEWKUBE Manager. If the address
is known it is now possible to make a simple HT'TP POST request to upload the desired
plugin as a .jar file to the worker instance, which is followed by another POST request to
start the plugin.

From the workflow used before and after the integration, it is clear that the Cloud Native
Plugin has added to the operability aspect. There is external access to the individual worker
instances, to manage and control them at runtime. All workflows to control the worker
instances look similar to the one presented.

In conclusion, integrating the Cloud Native Plugin has greatly improved the operability
aspect of the cluster. After the integration, the cluster fulfills the Cloud Nativity operability
aspect.

10.1.3 Observability

The observability aspect is about monitoring a system. This can be done in different ways.
For the Cloud Native Plugin this means that several ways to monitor a worker instance are
now possible.

First, the plugin provides an HTTP endpoint where log information about a worker
instance can be queried, wich can be done from any RENEW instance where the Cloud Native
Plugin is present. Another way how the Cloud Native Plugin implements the observability
aspect is by providing health metrics. Here, information about the running RENEW instance
and the host system are provided. This includes CPU utilization, RAM utilization, memory
usage, runtime, and performance status. Furthermore, it is possible to display the described
information in a graphical user interface, which is implemented with Spring Boot Admin.
This third-party software from the Spring Ecosystem retrieves the health information and
provides it via a separate HI'TP endpoint.

In addition to this provided informationen a StatusCollector Plugin was created. This
plugin was developed in conjunction with Cloud Native Plugin and is a connector between
the Cloud Native Plugin and other RENEW plugins. It allows any RENEW plugin with the
StatusCollector as a dependency to pass its custom status messages to the health endpoint.
Using a separate plugin to add this kind of information has the advantage that each plugin
developer can decide which information should be displayed and that there is no direct
dependency on the Cloud Native Plugin.

What is still missing in the current state of development is a central point where infor-
mation about the various nodes can be queried. For this, the Status Monitor component
from the technical realization of the MUSHU architecture would have to be conceptualized

10.2. WORKING METHOD 61

and integrated, which is context of another thesis.
Overall the Cloud Native Plugin represents a significant improvement in the observabil-
ity aspect of the cluster.

10.1.4 Resilience

The resilience aspect has not been directly implemented by the Cloud Native Plugin. In-
stead, integrating the Cloud Native Plugin now offers the possibility to react to single points
of failure.

For example, this is possible through the use of the provided HTTP endpoints. Be-
fore the integration, the Java RMI of the Distribute Plugin was a central point of errors.
However, all worker nodes can now be addressed and controlled directly via the HTTP
interface. So the whole system can still be controlled and administered, even if the Java
RMI is no longer available.

Currently, it is still impossible to use the cluster without the Distribute Plugin and the
Java RMI. Work has been done on the implementation of simple communication via Apache
Kafka, but this is not integrated into the current technical realization of the MUSHU archi-
tecture. In addition, complex communication would have to be implemented to guarantee
even more reliability, which is currently also context of another thesis.

Since many plugins interact together in RENEW, error possibilities are almost unlimited.
Therefore, it is not possible to avoid all errors, and it is more important is to ensure
functionality in case an error occurs. An automated response to a failing node is not
implemented in the Cloud Native Plugin. However, the plugin provides all functionalities
needed to detect a failure and reset a working instance. It would be possible that the
RENEWKUBE Manager can then use the provided functionality to reset an instance in case
of an error.

It can be seen that the integration has improved the resilience aspect, but there is still
more work to be done to have a completely resilient system. Possible approaches to further
improving the reliability are described in chapter .

10.2 Working Method

Within the scope of this thesis’s development, I worked together with different participants.
Thereby, different working methods and work structures were used. Therefore, this section
evaluates how the different working methods have affected this thesis. In particular, the
focus here is on the work done within the AOSE 22/23 project.

Although the MUSHU architecture was mainly created in (Réwekamp 2023a), some
components were also created within the AOSE project context. Thus, for example, already
in the AOSE 20/21 project, the Cloud Native Plugin covered in this thesis was developed.
In that project, I came first into contact with the MUSHU architecture and played a central
role in developing the Cloud Native Plugin.

Furthermore, there was work and cooperation on implementing technical realization of
MUSHU at several points. For example, a task force was formed to work on elements of the
implementation in preparation for Jan Henrik’s disputation, which was also summarized in
chapter p.

Because of the history of MUSHU in the AOSE project context, the idea came up to
combine the development of this thesis with the AOSE 22/23 project. That is why I took
on the role as the product owner and led a small team in the context of Scrum in the AOSE
22/23 project.

62 CHAPTER 10. EVALUATION

Within the scope of my role, it was my task to set up a plan for the integration of
the Cloud Native Plugin into the current version of the technical realization of the MUSHU
architecture. Furthermore, it was my task to guarantee that a general level of knowledge
about MUSHU was present in the team and to create tasks for all team members corre-
sponding to their skills.

Even though Scrum leaves it up to the developers themselves to do the concrete im-
plementations, I had influence in all implementations. This usually meant that I created
exemplary implementations for a problem, and the team then carried out similar imple-
mentations. So, regarding Scrum, I also partially took on the developer role, which allowed
me to take direct control in the development process.

The general work done was very successful. By distributing the workload, it was possible
to work on different topics at the same time. This was especially helpful when the cluster
recovery was an unexpected major problem.

Regarding the teaching purpose of the project, the team members learned to work on
modern technologies such as Java Spring, Docker, and Kubernetes. In addition, the interest
in MUSHU has been passed on to the next generation, in the hope that they will continue
to work on the MUSHU architecture and its implementation.

Another positive point was the collaboration with other graduating students. In par-
ticular with those which also work in the context of MUSHU. Thus one could profit from
the knowledge of others and during the development one could pay attention to the imple-
mentations and possible connections to other thesis.

Nevertheless, a few negative things were noticeable when working with the AOSE
project team. First, the introduction to the MUSHU topic created a significant overhead.
Due to different levels of knowledge in the team, much time had to be spent to bring the
team to the same level of understanding. Furthermore, much time was spent in meetings
and coordination due to the whole project structure.

In the individual case of my team, the Scrum Master unexpectedly quit the project.
This led to the fact that the team lost a member, and I primarily took over the tasks.
Since such a scenario is very individual, this does not necessarily have to be true for other
circumstances. However, it is still important to consider such possibilities in the time plan-
ning phase of a thesis.

In summary, I still recommend further work in the context of MUSHU to be included
in the AOSE project. Despite all the overhead, it helped me to work in a team when
developing the results of this thesis. Software development is mostly teamwork, and the
topic around MUSHU is the perfect opportunity to work in a small team and modern
technologies in a distributed software environment. Looking back, I would make the same
decision to work together on the development with the AOSE project team.

10.3 Compliance with Requirements

At the beginning of this thesis, requirements were set up to be considered in the devel-
opment. Each requirement is addressed and evaluated to see if it has been met in this
section.

The first requirement R1 was that the current state of development and documenta-
tion of the Cloud Native Plugin is recorded. This had the background to create a starting
point for the integration. In addition, requirement R2 was set up, which states that a
suitable version of the Cloud Native Plugin should be determined for the integration. Both
requirements were dealt with in the context of the prototype in chapter @. The result of

10.3. COMPLIANCE WITH REQUIREMENTS 63

the prototype was a summary of the previously created documentation and its supplemen-
tation with missing content. By collecting information and supplementing it, a complete
documentation of the plugin was obtained, which thus fulfills requirement R1. In addition,
current implementation variants of the Cloud Native Plugin were considered, and a suitable
variant for the integration was determined, which fulfills requirement R2.

The next requirement R3 deals with the status of the technical realization of the MUsHU
architecture. It should be determined which components must be adapted so that the inte-
gration of the Cloud Native Plugin can take place. In addition, it was stated in requirement
R4 that the necessary adjustments would be carried out. Both requirements were addressed
in the prototype in chapter H This prototype describes a work phase in which the deter-
mined changes the components of the technical realization were carried out, which was done
in cooperation with Jan Henrik Rowekamp in the context of his dissertation. The result
of this prototype gives an overview of the status of different components of the technical
realization of MUSHU and the changes made at the respective components. Therefore, this
prototype fulfills both of the requirements R3 and R4.

After that, requirements for the production environment were established. For require-
ment R5, it should be determined in which state the current technical implementation the
cluster was. Further, requirement R6 demands that if the cluster is not usable, to restore
it and that the documentation of the usage of it is sufficiently updated to facilitate later
use. Both requirements are handled in the prototype of chapter B In that chapter, the
current state of the cluster was documented and an overview of the previous work done
was given. Afterward, the reestablishment of the environment is accomplished. Finally,
the former and the reworked documentation is addressed. The requirement Rb5 is fulfilled
thus to the beginning of the prototype, it was determined that the environment’s condition
was insufficient because of a system wipe. It follows the completion of requirement R6,
with the reestablishment of a usable state of the cluster, and the updating of the provided
instructions manual.

Requirements R7 and R8 deal with integrating the Cloud Native Plugin into the envi-
ronment. Here, requirement R7 focuses on ensuring that integration occurs in the latest
technical realization of the MUSHU architecture. In addition, requirement R8 focuses on
the documentation of the integration process to create a guide for subsequent integrations.
Both requirements are addressed in the prototype in chapter H In the prototype, all steps
are described, which were necessary to integrate the Cloud Native Plugin into the technical
realization of the MUSHU architecture. The step-by-step approach and documentation in
the prototype fulfill requirement R7. The presentation of the result at the end of the pro-
totype and the description of the implementation of the integration also fulfill requirement
RS.

After the integration, the question of the usability of the provided functions was raised.
Requirement R9 states that it should be evaluated how the functions can best be used in the
environment and that usage of the Cloud Native Plugin should be documented accordingly.
In the prototype in chapter §, a discourse with different approaches occurred. The approach
of an abstraction class was evaluated as a solution, and examples were created as reference
nets. The discussion in the prototype fulfills the requirement for a solution for the usability
of the functions in the cluster context. The created examples in the prototype fulfill mainly
the purpose of documentation and understanding, which fulfills the second part of the
requirement R9.

The last requirement is R10, states that a use case should be developed to demonstrate
the new functionality and validate the integration of the Cloud Native Plugin. For this
purpose, in the prototype in_chapter g, an all-in-one example was created that uses the
functions created in chapter § and constructs a coherent example that can be used in the

64 CHAPTER 10. EVALUATION

restored environment from chapter B Since the prototype deals with the development of
the use case and describing an exemplary simulation process, requirement R10 is fulfilled.
Consequently, all developed requirements in chapter B were fulfilled in this thesis.

Chapter 11

Conclusion

11.1 Summary

The first chapter of the thesis explains the motivation for working on the topic on the
integration of the Cloud Native Plugin. In addition, the goal of this thesis is described, and
the structure is presented.

It is followed by the basics chapter E in which the fundamental knowledge necessary for
understanding this thesis is presented. Technologies such as Docker, Kubernetes, and Java
Spring are explained in the context of this thesis. In addition, theoretical concepts such as
Cloud Nativity and Petri Nets are discussed. Also, the simulation software RENEW and the
associated MUSHU architecture are described since both play a central role in this thesis.
The basics are followed by the definition of requirements in chapter B to be fulfilled within
the scope of this thesis.

In chapter @, there is an overview of the current implementation of the Cloud Native
Plugin prior to the integration. Information from a wide variety of previous work is compiled
and reviewed. In addition, general information and required documentation were added if
incomplete. A closer look at the plugin’s file structure was taken, and the functions around
the plugin upload were documented.

This is followed by chapter H, which sets the focus on the technical realisation of MUSHU
and its components. It describes the work phase in preparation for Jan Henrik’s disputation.
Work was done on the various RENEW plugins, which all had something to do with the
final implementation and integration of the MUSHU architecture. Therefore, a closer look
is taken at the relevant work for the Cloud Native integration.

Chapter B covers the setup of a production environment. This environment is used
to develop and test the technical implementation of the MUSHU architecture and is the
basis for integrating the Cloud Native Plugin. In this prototype, the current state of the
environment and its documentation are recorded. The restoration of a usable state follows
this after it has become unusable due to software updates. Instructions are revised and
reworked to simplify subsequent setups. In addition, minor environmental upgrades are
made to enable integration of the Cloud Native Plugin. The result is a working produc-
tion environment that can serve as the basis for further integration. Lastly, revised and
supplemented documentation for setting up and using the environment were created.

This is followed by chapter H in which the actual integration of the Cloud Native Plugin
is carried out. In this prototype, a step-by-step integration of the Cloud Native Plugin
into the previously restored production environment is described. The focus is on the steps
required to integrate a subcomponent into the MUSHU architecture. As a result, a current
state of the production environment is presented, in which the Cloud Native Plugin has
been integrated as a component.

65

66 CHAPTER 11. CONCLUSION

Chapter B focuses on the usability of the Cloud Native Plugin in the cluster. In this
prototype, various approaches are discussed to make the functions provided by the plugin
more easily usable. The discussion results in an abstraction class created to execute HT'TP
requests directly from a developed reference net. For documentation and better under-
standing, example reference nets were created that can be employed to utilize the functions
of the Cloud Native Plugin directly from a simulation context.

The last prototype in chapter 9, deals with the validation the integration of the Cloud
Native Plugin. For this purpose, a coherent example is created that uses the reference nets
developed in section and links them to an already created example from RENEWKUBE.
The result is a simulation that uses the production environment created in chapter f to
manipulate a remote RENEW instance to meet the requirements for its distributed simula-
tion. By successfully running the simulation, the integration process of the Cloud Native
Plugin into the environment has been validated.

In the penultimate chapter, the complete integration is then evaluated. For this pur-
pose, reference is made to the requirements established in chapter 3. Each requirement
is individually addressed to analyze how well each requirement is fulfilled. It follows the
conclusion which includes this summary and an outlook on further topics that resulted from
this work or stand in a strong connection to it.

11.2 Outlook

With this work, the integration of the Cloud Native Plugin on the cluster was carried
out. Furthermore, the MUSHU architecture has been realized one step closer to comple-
tion. However, several components are still missing for implementing the complete MUSHU
architecture on the cluster. Since the integration of all missing components would have
gone beyond the scope of this thesis, the components would still have to be developed and
integrated in further work.

In this section, the currently ongoing work on related topics are outlined. In addition,
a perspective is given on what further work is conceivable in the context of MUSHU and
what the next logical step would be to complete the technical realization of MUSHU.

Ongoing Related Work to the Mushu Architecture

At the time of writing, various elements of the technical realization of the MUSHU archi-
tecture are being worked on. This subsection will briefly summarize which elements will be
completed shortly.

The AOSE project team will continue with the work on the technical realization of
MusHU. They will work on components of the MUSHU architecture, started with this
thesis. The significant focus is on the complete restoration of the production environment.
To achieve that, the complete integration of RENEWKUBE must occur, which was only
partially in the scope of this thesis. Bringing RENEWKUBE in a working state is the
primary goal of the project team. Furthermore, the team is currently working on creating
VM images that can be used for development purposes. These have the advantage that no
access to the university lab is necessary to work on technical realization.

Parallel to working on the project, two bachelor theses are being written in the context
of MusHU. On the one hand, the status monitor, also mentioned in this thesis, is examined
more closely. Thereby it is discussed which information is to be displayed about which
components and in which granularity. The theoretical focus is set on the observability
aspect of Cloud Nativity.

11.2. OUTLOOK 67

On the other hand a different thesis deals with elaborating the complex communication
of the technical realization of the MUSHU architecture. In particular, the focus is on the
orchestrator component and makes substantial reference to the simple communication with
Apache Kafka developed in (Senger 2021)). In the context of that work, the Distribute
Plugin is exchanged as a communication medium, and simple and complex communication
is integrated into the technical realization.

11.2.1 Other Potential Topics Related to Mushu

If a state is reached in which the target version of the technical realization described in
section is complete, MUSHU can be used for more complex distributed simulations.
For example, one can use the Distribute Plugin developed in RENEW to evaluate what
performance improvement the MUSHU architecture achieves in terms of simulation speed.
Another use case would be the Sidler game developed for MULAN, where it would be
possible to provide each player with their own RENEW instance to achieve proper distributed
simulation.

In addition, a solution for rights management should be found. As mentioned in chap-
ter f, certain elements need admin permissions to work without problems. Since RENEW is
in the context of reference nets and thus in combination with MUSHU in the area of remote
code execution, it must be guaranteed here that the access is regulated. Since the imple-
mentation runs on university computers and in the university network, this topic needs to
be addressed.

The ability of MUSHU to scale dynamically, to run RENEW on one or more high-
performance servers, and provide access over a web interface to communicate with it, makes
it possible to think of RENEW as a service. Several approaches for a possible web interface
for RENEW have already been discussed, and MUSHU would be a good choice for a powerful
backend. The advantage of RENEW as a service is saving the manual RENEW installation in
the teaching application of RENEW. So RENEW can be used directly from the web without
setup and installation.

Furthermore, testing a version of MUSHU with other modern technologies in distributed
software solutions is possible. It would be interesting to see if it is possible to set up an
automatic scaling MUSHU system based on a provider such as Amazon AWS. This would
enable us to perform high-performance analyses of MUSHU and test the reliability of the
technical implementation with industrial implementations standards.

In a small context, one could also consider transferring the created examples in chapter E
to NetComponents. This would make it even easier for reference net creators to use the
Cloud Native Plugin functions as ready-made building blocks for RENEW.

68

CHAPTER 11.

CONCLUSION

Bibliography

Cabac, Lawrence (Apr. 2010). “Modeling Petri Net-Based Multi-Agent Applications”. Dis-
sertation. Vogt-Kolln Str. 30, D-22527 Hamburg: Universitdt Hamburg, Department
Informatik. URL: https://ediss.sub.uni-hamburg.de/handle/ediss/3691.

Docker (2023a). Docker Qverview. URL: https : //docs . docker . com/ get - started /
overview/ (visited on 03/07/2023).

— (2023b). Install Docker Engine on Ubuntu. URL: https://docs.docker.com/engine/
install/ubuntu/ (visited on 03/16/2023).

Drumond, Claire (2023). Was ist Scrum? URL: https://wuw.atlassian.com/de/agile/
scrum (visited on 03/17/2023).

Duvigneau, Michael (Oct. 2009). “Konzeptionelle Modellierung von Plugin-Systemen mit
Petrinetzen”. https://ediss . sub . uni-hamburg . de/handle/ediss/3023. Dis-
sertation. Vogt-Kolln Str. 30, D-22527 Hamburg: Universitdt Hamburg, Department
Informatik. URL: https://ediss.sub.uni-hamburg.de/handle/ediss/3023.

Edmeier, Johannes (2023). Spring Boot Admin Reference Guide. URL: https://codecent
ric.github.io/spring-boot-admin/2.5.1/# what_is_spring boot_admin (visited
on 03/07/2023).

Foundation, Cloud Native Computing (2023). The CNCF Cloud Native Definition vl.0.
URL: https://github.com/cncf/foundation/blob/main/charter.md (visited on
03/07/2023).

Fowler, Martin (2014). Inversion of Control Containers and the Dependency Injection
pattern. URL: https://martinfowler .com/articles/injection. html (visited on
03/07/2023).

Garrison, J. and K. Nova (2017). Cloud Native Infrastructure: Patterns for Scalable Infras-
tructure and Applications in a Dynamic Environment. O’Reilly Media. ISBN: 9781491984253.
URL: https://books.google.de/books?id=1Fk7DwAAQBAJ.

GitLab (2023). GitLab Container Registry. URL: https://docs.gitlab.com/ee/user/
packages/container_registry/ (visited on 03/16/2023).

IBM (2023). What is Kubernetes? URL: https://www . ibm . com/topics/kubernetes
(visited on 03/07/2023).

Jan Henrik Rowekamp (2018). “Investigating the Java Spring Framework to Simulate Ref-
erence Nets with Renew”. In: Algorithms and Tools for Petri Nets, Proceedings of the
Workshop AWPN 2018, Augsburg, Germany, pp. 41-46.

Jan Henrik Rowekamp Marvin Taube, Yannik Stahl (2023). Generelle Informationen zu
tecnischen Realisierung von Mushu. URL: https://tgipm . informatik . uni - hamb
urg . de / confluence /display/AOSE21AVS /Generelle + Informationen (visited on
03/16/2023).

Janneck, Jan Robert (Mar. 2021). “Modularizing a Plugin System Using Java Modules:
Application to a Medium-Sized Open-Source Project”. Masterarbeit. Vogt-Kolln Str.
30, D-22527 Hamburg: Universitat Hamburg, Fachbereich Informatik.

Kubernetes (2023a). Kubernetes Concepts Overview. URL: https://kubernetes.io/docs/
concepts/overview/ (visited on 03/07/2023).

69

https://ediss.sub.uni-hamburg.de/handle/ediss/3691
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://www.atlassian.com/de/agile/scrum
https://www.atlassian.com/de/agile/scrum
https://ediss.sub.uni-hamburg.de/handle/ediss/3023
https://ediss.sub.uni-hamburg.de/handle/ediss/3023
https://codecentric.github.io/spring-boot-admin/2.5.1/#_what_is_spring_boot_admin
https://codecentric.github.io/spring-boot-admin/2.5.1/#_what_is_spring_boot_admin
https://github.com/cncf/foundation/blob/main/charter.md
https://martinfowler.com/articles/injection.html
https://books.google.de/books?id=1Fk7DwAAQBAJ
https://docs.gitlab.com/ee/user/packages/container_registry/
https://docs.gitlab.com/ee/user/packages/container_registry/
https://www.ibm.com/topics/kubernetes
https://tgipm.informatik.uni-hamburg.de/confluence/display/AOSE21AVS/Generelle+Informationen
https://tgipm.informatik.uni-hamburg.de/confluence/display/AOSE21AVS/Generelle+Informationen
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/

Kubernetes (2023b). Kubernetes Documentation - Getting started. URL: https://kuberne
tes.io/docs/setup/ (visited on 03/16/2023).

Kummer, Olaf (2002). Referenznetze. Berlin: Logos Verlag. 1SBN: 978-3-8325-0035-1. URL:
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035&1ng=eng&id=.

Kummer, Olaf, Frank Wienberg, and Michael Duvigneau (Oct. 2002). Renew — The Ref-
erence Net Workshop. Available at: http://www.renew.de/. Release 1.6. URL: http:
//www.renew.de/.

Kummer, Olaf, Frank Wienberg, Michael Duvigneau, et al. (Nov. 2020). Renew — The
Reference Net Workshop. Release 2.5.1. URL: http://www.renew.de/.

Marvin Taube, Patrick Mohr (2021). “Implementation of Cloud Native Renew based on
Java Spring”. In: Report PAOSE-Project WS 20/21, pp. 83-92. URL: https://git.
informatik.uni-hamburg.de/tgi/teaching/ws20/aose20/aose20-bericht.

Microsoft (2023). Comparing Docker containers with virtual machines. URL: https://
learn.microsoft.com/en-us/dotnet/architecture/microservices/container-
docker-introduction/docker-defined (visited on 03/07/2023).

Mirantis (2023). Dockerd as a compliant Container Runtime Interface for Kubernetes. URL:
https://github.com/Mirantis/cri-dockerd (visited on 03/16/2023).

Petri, Carl Adam (1996). “Nets, Time and Space”. In: Theoretical Computer Science 153.1—
2. Ed. by Maurice Nivat and Grzegorz Rozenberg, pp. 3-48.

Renew - The Reference Net Workshop (2023). URL: http://www.renew.de/ (visited on
03/17/2023).

Rolke, Heiko (1999). “Modellierung und Implementation eines Multi-Agenten-Systems auf
der Basis von Referenznetzen”. Diplomarbeit. Universitdt Hamburg, Fachbereich Infor-
matik.

Réwekamp, Jan Henrik (2023a). “Skalierung von nebenlédufigen und verteilten Simulation-
ssystemen fiir interagierende Agenten”. PhD thesis. Vogt-Kolln Str. 30, D-22527 Ham-
burg: Universitit Hamburg, Fachbereich Informatik. URL: https://ediss.sub.uni-
hamburg.de/handle/ediss/10040.

— (2023b). Webpage for RenewKube. URL: https://paose.informatik.uni-hamburg.
de/paose/wiki/RenewKube (visited on 03/16/2023).

Roéwekamp, Jan Henrik and Daniel Moldt (2019). “RenewKube: Reference Net Simulation
Scaling with Renew and Kubernetes” In: Application and Theory of Petri Nets and
Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany,
June 23-28, 2019, Proceedings. Ed. by Susanna Donatelli and Stefan Haar. Vol. 11522.
Lecture Notes in Computer Science. Springer, pp. 69-79. ISBN: 978-3-030-21570-5. URL:
https://doi.org/10.1007/978-3-030-21571-2 4.

Rowekamp, Jan Henrik, Marvin Taube, et al. (2021). “Cloud Native Simulation of Refer-
ence Nets”. In: Proceedings of the International Workshop on Petri Nets and Software
Engineering 2021 co-located with the 42nd International Conference on Application and
Theory of Petri Nets and Concurrency (PETRI NETS 2021), Paris, France, June 25th,
2021 (due to COVID-19: virtual conference). Ed. by Michael Kohler-Bufimeier, Ekkart
Kindler, and Heiko Rolke. Vol. 2907. CEUR Workshop Proceedings. CEUR-WS.org,
pp. 85-104. URL: http://ceur-ws.org/Vol-2907.

Schwaber, Ken and Jeff Sutherland (2023). The 2020 Scrum Guide. URL: https://scrum
guides.org/scrum-guide.html (visited on 03/17/2023).

Senger, Alexander (Nov. 2021). “Erweiterung des Renew Petrinetz-Simulators um cloud-
native Systemkomponenten”. Bachelorarbeit. Vogt-Kolln Str. 30, D-22527 Hamburg:
Universitat Hamburg, Fachbereich Informatik.

70

https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035&lng=eng&id=
http://www.renew.de/
http://www.renew.de/
http://www.renew.de/
https://git.informatik.uni-hamburg.de/tgi/teaching/ws20/aose20/aose20-bericht
https://git.informatik.uni-hamburg.de/tgi/teaching/ws20/aose20/aose20-bericht
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://github.com/Mirantis/cri-dockerd
http://www.renew.de/
https://ediss.sub.uni-hamburg.de/handle/ediss/10040
https://ediss.sub.uni-hamburg.de/handle/ediss/10040
https://paose.informatik.uni-hamburg.de/paose/wiki/RenewKube
https://paose.informatik.uni-hamburg.de/paose/wiki/RenewKube
https://doi.org/10.1007/978-3-030-21571-2_4
http://ceur-ws.org/Vol-2907
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html

Simon, Michael (Mar. 2014). “Concept and Implementation of Distributed Simulations in
RENEW”. Bachelorarbeit. Vogt-Kolln Str. 30, D-22527 Hamburg: Universitdt Hamburg,
Fachbereich Informatik.

Spring, Java (2023). Why Spring? URL: https://spring . io/why-spring (visited on
03/07/2023).

Sutherland, Jeff and Scrum Inc (2023). The Scrum At Scale® Guide. URL: https://www.
scrumatscale.com/scrum-at-scale-guide-online/ (visited on 03/17/2023).

71

https://spring.io/why-spring
https://www.scrumatscale.com/scrum-at-scale-guide-online/
https://www.scrumatscale.com/scrum-at-scale-guide-online/

72

73

74

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudien-
gang Informatik selbststdndig verfasst und keine anderen als die angegebenen Hilfsmittel —
insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe.
Alle Stellen, die wortlich oder sinngeméfl aus Veroffentlichungen entnommen wurden, sind
als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in
einem anderen Priifungsverfahren eingereicht habe und die eingereichte schriftliche Fassung
der auf dem elektronischen Speichermedium entspricht.

Hamburg, den 20. Méarz 2023

Marvin Taube

	Contents
	List of Figures
	Introduction
	Motivation
	Objective
	Structure

	Basics
	Cloud Nativity
	Java Spring
	Dependency Injection
	Spring Boot Admin

	Docker
	Kubernetes
	Petri Nets
	Renew
	Architecture
	Plugins

	Method of Working and Tools
	Agile Software Development
	Tools

	Mushu Architecture
	Concept
	Technical Realization

	Requirements Analysis
	An Overview of the Cloud Native Renew Plugin
	Requirements
	Specification
	Analysis of the Current State of Cloud Native Renew
	File Structure
	Additional Documentation of the Plugin
	Uploading of Plugins
	Loading of Plugins

	Versions of the Cloud Native Plugin
	Evaluation
	General Evaluation

	Preparation of Mushu Components
	Requirements
	Specification
	Performed Work on Renew Plugins
	Distribute
	RenewKube
	Cloud Native
	Additional Work

	Evaluation
	Working Phase
	General Evaluation

	Setup a Distributed Production Environment
	Requirements
	Specification
	Starting Point of the Production Environment
	Recovery of the Production Environment
	Base Software
	Renew

	Documentation
	Result
	Evaluation
	Accomplishment of the Results
	Limitations
	General Evaluation

	Integrating Cloud Native Renew
	Requirements
	Specification
	Steps for Integration
	Creation of Build Tasks
	Providing new Docker Images
	Update of Scripts
	Updated Documentation

	Result
	Evaluation
	Limitations
	General Evaluation

	Extension of the Cloud Native Renew Usability
	Requirements
	Specification
	The best Way to Create Examples
	Different Types of Example Nets
	Outcome

	Cloud Native Renew Plugin Extension
	General Extension
	Explicit Extension

	Evaluation
	Methods of creating Cloud Native Renew Examples
	General Evaluation

	Validation of the Cloud Native Renew Plugin
	Requirements
	Specification
	Creation of a Coherent Example
	Created Reference Nets
	Simulation Process

	Evaluation
	Limitations of the Validation
	General Evaluation

	Evaluation
	Cloud Native Aspects
	Agility
	Operability
	Observability
	Resilience

	Working Method
	Compliance with Requirements

	Conclusion
	Summary
	Outlook
	Other Potential Topics Related to Mushu

	Bibliography

